An Implicit Transformer-based Fusion Method for Hyperspectral and Multispectral Remote Sensing Image

多光谱图像 高光谱成像 遥感 地理 图像融合 计算机科学 计算机视觉 人工智能 地图学 图像(数学)
作者
Chunyu Zhu,Tinghao Zhang,Qiong Wu,Yachao Li,Qin Zhong
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:131: 103955-103955 被引量:5
标识
DOI:10.1016/j.jag.2024.103955
摘要

There is an effective way to enhance the spatial resolution of hyperspectral remote sensing images by fusing them with multispectral remote sensing images. However, most of the existing deep fusion techniques adopt discretized explicit models to approximate the complex continuous nonlinear mapping in the fusion process, leading to limitations in enhancing the fidelity of spatial details. Additionally, existing algorithms commonly utilize discrete methods such as bilinear or bicubic interpolation during the hyperspectral upsampling process, leading to the loss of crucial spatial-spectral features. To this end, this study proposes a novel Implicit Transformer Fusion Generative Adversarial Network (ITF-GAN), which incorporates the continuity perception mechanism of implicit neural representation with the powerful self-attention mechanism of the Transformer architecture, which uses point-to-point implicit functions aiming to efficiently process information in both spatial and spectral dimensions. Besides, a guided implicit neural sampling module is introduced in the hyperspectral image up-sampling process to enhance the coordinated expression of features in the spatial and spectral domains, which improves the spatial resolution and spectral fidelity of the fused image during the upsampling process. A series of fusion experiments including 4x, 8x, and 16x scale factors have shown that ITF-GAN has significant advantages over current popular fusion algorithms in both objective evaluation indicators and subjective visual evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尛瞐慶成发布了新的文献求助10
1秒前
科研通AI5应助mjr采纳,获得10
1秒前
小手凉凉发布了新的文献求助10
1秒前
隐形发布了新的文献求助80
2秒前
3秒前
丘比特应助Hu猪猪采纳,获得10
3秒前
随遇而安完成签到,获得积分10
4秒前
宁次完成签到,获得积分20
4秒前
4秒前
shelemi发布了新的文献求助10
4秒前
科研通AI5应助喜看财经采纳,获得10
5秒前
春树完成签到,获得积分10
5秒前
6秒前
雾安发布了新的文献求助10
7秒前
9秒前
11秒前
11秒前
mjr发布了新的文献求助10
11秒前
时光如梭发布了新的文献求助20
13秒前
Ywr发布了新的文献求助10
13秒前
seven关注了科研通微信公众号
14秒前
雪宝宝发布了新的文献求助20
14秒前
随遇而安发布了新的文献求助10
14秒前
14秒前
apple发布了新的文献求助10
15秒前
bubble发布了新的文献求助10
15秒前
JC发布了新的文献求助10
16秒前
852应助xh采纳,获得10
16秒前
19秒前
19秒前
无花果应助坦率不惜采纳,获得10
19秒前
sdjtxdy发布了新的文献求助10
20秒前
雪宝宝完成签到,获得积分10
23秒前
黄新绒完成签到,获得积分10
23秒前
23秒前
小岛完成签到,获得积分20
23秒前
23秒前
23秒前
nihao完成签到 ,获得积分10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811261
求助须知:如何正确求助?哪些是违规求助? 3355666
关于积分的说明 10377085
捐赠科研通 3072462
什么是DOI,文献DOI怎么找? 1687583
邀请新用户注册赠送积分活动 811691
科研通“疑难数据库(出版商)”最低求助积分说明 766741