Mahalanobis-Kernel Distance-Based Suppressed Possibilistic C-Means Clustering Algorithm for Imbalanced Image Segmentation

模式识别(心理学) 聚类分析 马氏距离 人工智能 模糊聚类 核(代数) 维数之咒 图像分割 数学 计算机科学 离群值 火焰团簇 相关聚类 CURE数据聚类算法 数据挖掘 分割 组合数学
作者
Haiyan Yu,Shuang Xie,Jiulun Fan,Rong Lan,Bo Lei
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 4595-4609 被引量:4
标识
DOI:10.1109/tfuzz.2024.3405497
摘要

The Possibilistic c-means clustering (PCM) is an important unsupervised pattern recognition method. However, it is still faced with huge challenges in clustering multidimensional data with multiple characteristics, such as imbalanced sample sizes, imbalanced feature components, noise and outlier corruption, and the sparse distribution of small targets in the feature space caused by the "curse of dimensionality". In view of this, this paper proposes a possibilistic c-means clustering algorithm based on the Mahalanobis-Kernel Distance and the suppressed competitive learning strategy. To begin with, the Mahalanobis-Kernel Distance combined with the absolute attribute of possibilistic memberships is proposed to enhance the intra-class compactness of small targets with sparse distribution and feature imbalance. In addition, to overcome the inherent coincident clustering problem caused by possibilistic memberships, the "suppressed competitive learning" mechanism based on the Mahalanobis-Kernel distance is designed to generate cluster cores and correct memberships of objects located within the cluster cores, thus guiding purposefully the clustering process. Furthermore, spatial information is introduced by the membership filtering scheme to improve the segmentation effect of color images with small targets and noise injection. Experimental results show that the algorithm in this paper can achieve better clustering and segmentation performance than several state-of-the-art fuzzy clustering methods for color images with imbalanced sizes and features, and noise injection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
social_yjj完成签到,获得积分10
刚刚
刚刚
1秒前
三旬完成签到,获得积分10
1秒前
企鹅发布了新的文献求助10
4秒前
guojingjing发布了新的文献求助10
4秒前
Sean完成签到,获得积分10
5秒前
细腻老四发布了新的文献求助10
5秒前
6秒前
缪连虎发布了新的文献求助10
6秒前
巷子里的猫完成签到,获得积分10
7秒前
鲤鱼醉波完成签到,获得积分10
7秒前
yyyyyyyyyy完成签到,获得积分10
8秒前
11秒前
虹虹完成签到,获得积分20
12秒前
12秒前
减简关注了科研通微信公众号
12秒前
吴钰哲完成签到,获得积分10
13秒前
14秒前
大B哥完成签到,获得积分10
14秒前
道衍先一完成签到,获得积分10
15秒前
莫茹发布了新的文献求助10
17秒前
荣弟完成签到,获得积分10
18秒前
沐风完成签到 ,获得积分10
20秒前
善学以致用应助YY采纳,获得10
20秒前
20秒前
21秒前
动听的琴完成签到,获得积分10
22秒前
25秒前
杨晓柳完成签到,获得积分10
26秒前
Azhou完成签到,获得积分10
26秒前
谦让大娘发布了新的文献求助10
28秒前
28秒前
30秒前
31秒前
相对发布了新的文献求助80
33秒前
合适台灯发布了新的文献求助30
33秒前
33秒前
哎呀哎呀呀完成签到,获得积分10
34秒前
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783816
求助须知:如何正确求助?哪些是违规求助? 3329060
关于积分的说明 10239739
捐赠科研通 3044482
什么是DOI,文献DOI怎么找? 1671054
邀请新用户注册赠送积分活动 800101
科研通“疑难数据库(出版商)”最低求助积分说明 759192