已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SGFNet: Redundancy-Reduced Spectral–Spatial Fusion Network for Hyperspectral Image Classification

作者
Boyu Wang,Chi Cao,De-Xing Kong
出处
期刊:Entropy [MDPI AG]
卷期号:27 (10): 995-995 被引量:1
标识
DOI:10.3390/e27100995
摘要

Hyperspectral image classification (HSIC) involves analyzing high-dimensional data that contain substantial spectral redundancy and spatial noise, which increases the entropy and uncertainty of feature representations. Reducing such redundancy while retaining informative content in spectral–spatial interactions remains a fundamental challenge for building efficient and accurate HSIC models. Traditional deep learning methods often rely on redundant modules or lack sufficient spectral–spatial coupling, limiting their ability to fully exploit the information content of hyperspectral data. To address these challenges, we propose SGFNet, which is a spectral-guided fusion network designed from an information–theoretic perspective to reduce feature redundancy and uncertainty. First, we designed a Spectral-Aware Filtering Module (SAFM) that suppresses noisy spectral components and reduces redundant entropy, encoding the raw pixel-wise spectrum into a compact spectral representation accessible to all encoder blocks. Second, we introduced a Spectral–Spatial Adaptive Fusion (SSAF) module, which strengthens spectral–spatial interactions and enhances the discriminative information in the fused features. Finally, we developed a Spectral Guidance Gated CNN (SGGC), which is a lightweight gated convolutional module that uses spectral guidance to more effectively extract spatial representations while avoiding unnecessary sequence modeling overhead. We conducted extensive experiments on four widely used hyperspectral benchmarks and compared SGFNet with eight state-of-the-art models. The results demonstrate that SGFNet consistently achieves superior performance across multiple metrics. From an information–theoretic perspective, SGFNet implicitly balances redundancy reduction and information preservation, providing an efficient and effective solution for HSIC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
廾匸发布了新的文献求助10
1秒前
尾状叶完成签到 ,获得积分10
4秒前
5秒前
Jsssds发布了新的文献求助10
5秒前
6秒前
7秒前
ddl完成签到,获得积分10
7秒前
暖暖的禾日完成签到,获得积分10
8秒前
习习完成签到 ,获得积分10
8秒前
9秒前
大个应助一不小心又采纳,获得30
9秒前
Elena发布了新的文献求助10
11秒前
可乐不加冰完成签到 ,获得积分10
11秒前
kento发布了新的文献求助30
11秒前
六六安安发布了新的文献求助10
12秒前
chen完成签到 ,获得积分10
14秒前
14秒前
麻瓜完成签到,获得积分10
15秒前
17秒前
huihui完成签到,获得积分10
17秒前
18秒前
打打应助柚子采纳,获得10
19秒前
19秒前
hyh发布了新的文献求助10
19秒前
科研通AI6应助何丽雅采纳,获得10
20秒前
mashibeo应助玉洁采纳,获得10
20秒前
潘佳洁发布了新的文献求助20
21秒前
杨武天一发布了新的文献求助10
22秒前
桐桐应助NN采纳,获得10
22秒前
23秒前
Lucky完成签到 ,获得积分10
25秒前
余姓懒完成签到,获得积分10
25秒前
yaoyaoya发布了新的文献求助30
26秒前
乐乐应助宗远侵采纳,获得10
26秒前
刘壮实完成签到,获得积分20
27秒前
简单完成签到 ,获得积分10
27秒前
27秒前
Wilddeer完成签到 ,获得积分10
28秒前
hyh完成签到,获得积分20
30秒前
小二郎应助alan采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401107
求助须知:如何正确求助?哪些是违规求助? 4520125
关于积分的说明 14078405
捐赠科研通 4433074
什么是DOI,文献DOI怎么找? 2433990
邀请新用户注册赠送积分活动 1426148
关于科研通互助平台的介绍 1404738