Hyperspectral image classification (HSIC) involves analyzing high-dimensional data that contain substantial spectral redundancy and spatial noise, which increases the entropy and uncertainty of feature representations. Reducing such redundancy while retaining informative content in spectral–spatial interactions remains a fundamental challenge for building efficient and accurate HSIC models. Traditional deep learning methods often rely on redundant modules or lack sufficient spectral–spatial coupling, limiting their ability to fully exploit the information content of hyperspectral data. To address these challenges, we propose SGFNet, which is a spectral-guided fusion network designed from an information–theoretic perspective to reduce feature redundancy and uncertainty. First, we designed a Spectral-Aware Filtering Module (SAFM) that suppresses noisy spectral components and reduces redundant entropy, encoding the raw pixel-wise spectrum into a compact spectral representation accessible to all encoder blocks. Second, we introduced a Spectral–Spatial Adaptive Fusion (SSAF) module, which strengthens spectral–spatial interactions and enhances the discriminative information in the fused features. Finally, we developed a Spectral Guidance Gated CNN (SGGC), which is a lightweight gated convolutional module that uses spectral guidance to more effectively extract spatial representations while avoiding unnecessary sequence modeling overhead. We conducted extensive experiments on four widely used hyperspectral benchmarks and compared SGFNet with eight state-of-the-art models. The results demonstrate that SGFNet consistently achieves superior performance across multiple metrics. From an information–theoretic perspective, SGFNet implicitly balances redundancy reduction and information preservation, providing an efficient and effective solution for HSIC.