Filling the Gaps: A Multitask Hybrid Multiscale Generative Framework for Missing Modality in Remote Sensing Semantic Segmentation

作者
Nhi Ngo,Kien Nguyen,Arnold Wiliem,Clinton Fookes,Sridha Sridharan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2509.11102
摘要

Multimodal learning has shown significant performance boost compared to ordinary unimodal models across various domains. However, in real-world scenarios, multimodal signals are susceptible to missing because of sensor failures and adverse weather conditions, which drastically deteriorates models' operation and performance. Generative models such as AutoEncoder (AE) and Generative Adversarial Network (GAN) are intuitive solutions aiming to reconstruct missing modality from available ones. Yet, their efficacy in remote sensing semantic segmentation remains underexplored. In this paper, we first examine the limitations of existing generative approaches in handling the heterogeneity of multimodal remote sensing data. They inadequately capture semantic context in complex scenes with large intra-class and small inter-class variation. In addition, traditional generative models are susceptible to heavy dependence on the dominant modality, introducing bias that affects model robustness under missing modality conditions. To tackle these limitations, we propose a novel Generative-Enhanced MultiModal learning Network (GEMMNet) with three key components: (1) Hybrid Feature Extractor (HyFEx) to effectively learn modality-specific representations, (2) Hybrid Fusion with Multiscale Awareness (HyFMA) to capture modality-synergistic semantic context across scales and (3) Complementary Loss (CoLoss) scheme to alleviate the inherent bias by encouraging consistency across modalities and tasks. Our method, GEMMNet, outperforms both generative baselines AE, cGAN (conditional GAN), and state-of-the-art non-generative approaches - mmformer and shaspec - on two challenging semantic segmentation remote sensing datasets (Vaihingen and Potsdam). Source code is made available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿语完成签到 ,获得积分10
1秒前
果酱完成签到,获得积分10
3秒前
3秒前
小梁今天也要努力呀完成签到 ,获得积分10
3秒前
研友_ZegMrL完成签到,获得积分10
3秒前
123完成签到 ,获得积分10
5秒前
ZHZ完成签到,获得积分10
5秒前
Chen完成签到 ,获得积分10
6秒前
WULAVIVA完成签到,获得积分10
7秒前
9秒前
仇敌克星完成签到,获得积分10
11秒前
13秒前
你的样子完成签到,获得积分10
13秒前
秋风之墩完成签到,获得积分10
16秒前
16秒前
时代更迭完成签到 ,获得积分10
16秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
20秒前
shiluodeqiou完成签到,获得积分10
20秒前
梅梅子完成签到 ,获得积分10
21秒前
贝贝完成签到 ,获得积分10
22秒前
26秒前
xz发布了新的文献求助10
26秒前
陈M雯完成签到 ,获得积分10
26秒前
胡图图完成签到 ,获得积分10
28秒前
隐形白开水完成签到,获得积分0
29秒前
沐雨汐完成签到,获得积分10
30秒前
bckl888完成签到,获得积分10
30秒前
研友_VZGVzn完成签到,获得积分10
31秒前
盛意完成签到,获得积分10
31秒前
33完成签到,获得积分10
34秒前
小橘子完成签到 ,获得积分10
34秒前
bo完成签到 ,获得积分10
34秒前
乐观海燕完成签到 ,获得积分10
36秒前
典雅雅容完成签到,获得积分10
37秒前
zcydbttj2011完成签到 ,获得积分10
37秒前
对对对完成签到 ,获得积分10
38秒前
chengcheng完成签到,获得积分10
39秒前
Asumita完成签到,获得积分10
41秒前
杨明智完成签到 ,获得积分10
41秒前
年轻千愁完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188263
求助须知:如何正确求助?哪些是违规求助? 4372580
关于积分的说明 13613630
捐赠科研通 4225854
什么是DOI,文献DOI怎么找? 2318003
邀请新用户注册赠送积分活动 1316553
关于科研通互助平台的介绍 1266248