The Evaluation of Small-Scale Field Maize Transpiration Rate from UAV Thermal Infrared Images Using Improved Three-Temperature Model

蒸腾作用 环境科学 遥感 含水量 蒸散量 天蓬 土壤科学 地理 考古 工程类 生态学 光合作用 植物 岩土工程 生物
作者
Xiaofei Yang,Zhitao Zhang,Qi Xu,Ning Dong,Xuqian Bai,Yanfu Liu
出处
期刊:Plants [MDPI AG]
卷期号:14 (14): 2209-2209
标识
DOI:10.3390/plants14142209
摘要

Transpiration is the dominant process driving water loss in crops, significantly influencing their growth, development, and yield. Efficient monitoring of transpiration rate (Tr) is crucial for evaluating crop physiological status and optimizing water management strategies. The three-temperature (3T) model has potential for rapid estimation of transpiration rates, but its application to low-altitude remote sensing has not yet been further investigated. To evaluate the performance of 3T model based on land surface temperature (LST) and canopy temperature (TC) in estimating transpiration rate, this study utilized an unmanned aerial vehicle (UAV) equipped with a thermal infrared (TIR) camera to capture TIR images of summer maize during the nodulation-irrigation stage under four different moisture treatments, from which LST was extracted. The Gaussian Hidden Markov Random Field (GHMRF) model was applied to segment the TIR images, facilitating the extraction of TC. Finally, an improved 3T model incorporating fractional vegetation coverage (FVC) was proposed. The findings of the study demonstrate that: (1) The GHMRF model offers an effective approach for TIR image segmentation. The mechanism of thermal TIR segmentation implemented by the GHMRF model is explored. The results indicate that when the potential energy function parameter β value is 0.1, the optimal performance is provided. (2) The feasibility of utilizing UAV-based TIR remote sensing in conjunction with the 3T model for estimating Tr has been demonstrated, showing a significant correlation between the measured and the estimated transpiration rate (Tr-3TC), derived from TC data obtained through the segmentation and processing of TIR imagery. The correlation coefficients (r) were 0.946 in 2022 and 0.872 in 2023. (3) The improved 3T model has demonstrated its ability to enhance the estimation accuracy of crop Tr rapidly and effectively, exhibiting a robust correlation with Tr-3TC. The correlation coefficients for the two observed years are 0.991 and 0.989, respectively, while the model maintains low RMSE of 0.756 mmol H2O m−2 s−1 and 0.555 mmol H2O m−2 s−1 for the respective years, indicating strong interannual stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
秀丽雁芙完成签到 ,获得积分10
1秒前
认真水儿发布了新的文献求助10
2秒前
3秒前
4秒前
朴实的依风应助易安采纳,获得200
4秒前
柠栀发布了新的文献求助10
4秒前
5秒前
JamesPei应助wxnice采纳,获得10
5秒前
Orange应助模拟计算0368采纳,获得10
7秒前
华仔应助研友_8op0RL采纳,获得10
7秒前
7秒前
wop111发布了新的文献求助20
8秒前
9秒前
彭于晏应助欢乐轮回采纳,获得10
9秒前
10秒前
无别事完成签到 ,获得积分20
10秒前
陈漂亮完成签到,获得积分10
11秒前
今天做实验了吗完成签到 ,获得积分10
12秒前
大吉发布了新的文献求助10
13秒前
13秒前
zz完成签到 ,获得积分10
14秒前
易安给易安的求助进行了留言
15秒前
浮游应助柳桥桥采纳,获得10
15秒前
Violet完成签到 ,获得积分10
15秒前
17秒前
17秒前
18秒前
不要引力发布了新的文献求助10
18秒前
18秒前
打打应助漂亮的天宇采纳,获得10
18秒前
20秒前
上官若男应助文静盼兰采纳,获得10
21秒前
22秒前
Krsky发布了新的文献求助10
22秒前
22秒前
思源应助pearlwh1227采纳,获得10
22秒前
22秒前
一兜哇完成签到 ,获得积分20
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310126
求助须知:如何正确求助?哪些是违规求助? 4454484
关于积分的说明 13860310
捐赠科研通 4342533
什么是DOI,文献DOI怎么找? 2384591
邀请新用户注册赠送积分活动 1379052
关于科研通互助平台的介绍 1347386