海水
腐蚀
硼
化学
无机化学
制氢
氢
过电位
沉积(地质)
电解水
化学工程
电解
电化学
电解质
物理化学
电极
地质学
有机化学
海洋学
工程类
古生物学
沉积物
作者
Xiaowei Fu,Hongdong Li,Yingxia Zong,Weiping Xiao,Jinsong Wang,Hui Li,Tianyi Ma,Zexing Wu,Lei Wang
标识
DOI:10.1002/anie.202512710
摘要
Abstract Seawater electrolysis represents a promising avenue for hydrogen production, nevertheless, the Cl − corrosion and surface deposition of Ca(OH) 2 /Mg(OH) 2 hinder its practical application by deactivation. Herein, an interstitial boron doped osmium (B‐Os) is ultrafast (10 s) constructed by microwave quasi‐solid approach, where theoretical and experimental analysis proves that the interstitial boron triggers electron enrichment at the Os site and the formation of negative charge centers. The modified electronic structure electrostatically inhibits Cl − corrosion as well as promotes H 3 O + adsorption, creating a local acidic microenvironment in the natural seawater, neutralizing OH − and effectively avoiding Ca 2+ /Mg 2+ deposition. In situ spectroscopy and local pH monitoring confirm the pivotal role of the microenvironment in regulating reaction kinetics and stability. Therefore, B‐Os exhibits a remarkably low overpotential, for hydrogen evolution reaction (HER), of 7 mV@10 mA cm −2 in alkaline seawater, while maintaining stable performance over 400 h of stable operation in an anion exchange membrane (AEM) electrolyzer, significantly outperforming commercial Pt/C. Economic evaluation highlights its hydrogen production costs ($0.81 GGE −1 ) undercutting the U.S. DOE target.
科研通智能强力驱动
Strongly Powered by AbleSci AI