From pronounced to imagined: improving speech decoding with multi-condition EEG data

语音识别 计算机科学 解码方法 词(群论) 主题(文档) 脑电图 二元分类 卷积神经网络 心理学 人工智能 认知心理学 自然语言处理 语言学 支持向量机 精神科 哲学 图书馆学 电信
作者
Denise Alonso-Vázquez,Omar Mendoza-Montoya,Ricardo Caraza,Héctor R. Martínez,Javier M. Antelis
出处
期刊:Frontiers in Neuroinformatics [Frontiers Media SA]
卷期号:19: 1583428-1583428
标识
DOI:10.3389/fninf.2025.1583428
摘要

Introduction Imagined speech decoding using EEG holds promising applications for individuals with motor neuron diseases, although its performance remains limited due to small dataset sizes and the absence of sensory feedback. Here, we investigated whether incorporating EEG data from overt (pronounced) speech could enhance imagined speech classification. Methods Our approach systematically compares four classification scenarios by modifying the training dataset: intra-subject (using only imagined speech , combining overt and imagined speech , and using only overt speech ) and multi-subject (combining overt speech data from different participants with the imagined speech of the target participant). We implemented all scenarios using the convolutional neural network EEGNet. To this end, twenty-four healthy participants pronounced and imagined five Spanish words. Results In binary word-pair classifications, combining overt and imagined speech data in the intra-subject scenario led to accuracy improvements of 3%–5.17% in four out of 10 word pairs, compared to training with imagined speech only. Although the highest individual accuracy (95%) was achieved with imagined speech alone, the inclusion of overt speech data allowed more participants to surpass 70% accuracy, increasing from 10 ( imagined only ) to 15 participants. In the intra-subject multi-class scenario, combining overt and imagined speech did not yield statistically significant improvements over using imagined speech exclusively. Discussion Finally, we observed that features such as word length, phonological complexity, and frequency of use contributed to higher discriminability between certain imagined word pairs. These findings suggest that incorporating overt speech data can improve imagined speech decoding in individualized models, offering a feasible strategy to support the early adoption of brain-computer interfaces before speech deterioration occurs in individuals with motor neuron diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taimeili发布了新的文献求助10
1秒前
是天使呢发布了新的文献求助30
1秒前
3秒前
李健的小迷弟应助sssjjjxx采纳,获得10
4秒前
5秒前
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
和谐青柏应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
淡定宝贝发布了新的文献求助10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
SJJ应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
团子应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
7秒前
香蕉诗蕊应助科研通管家采纳,获得10
7秒前
和谐青柏应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
和谐青柏应助科研通管家采纳,获得10
7秒前
Frank应助科研通管家采纳,获得10
7秒前
科研前线发布了新的文献求助10
7秒前
思源应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
ahtj应助科研通管家采纳,获得30
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637632
求助须知:如何正确求助?哪些是违规求助? 4743709
关于积分的说明 14999836
捐赠科研通 4795711
什么是DOI,文献DOI怎么找? 2562180
邀请新用户注册赠送积分活动 1521649
关于科研通互助平台的介绍 1481599