MACHINE LEARNING MODELS FOR PREDICTING ELECTRICAL AND THERMAL BEHAVIOR IN HIGH-CAPACITY LITHIUM-ION BATTERIES

锂(药物) 材料科学 热的 离子 热容 计算机科学 热力学 心理学 化学 物理 精神科 有机化学
作者
T. Maitra,Amit Patra,Anandaroop Bhattacharya
出处
期刊:Heat transfer research [Begell House Inc.]
卷期号:57 (1): 41-97 被引量:1
标识
DOI:10.1615/heattransres.2025058959
摘要

The rising prominence of EVs has substantially increased the demand for high-capacity, rechargeable Li-ion batteries, necessitating advanced BMS to ensure reliable and optimized operational performance. Central to BMS functionality is the precise modeling of Li-ion battery behavior, particularly their thermal and electrical dynamics. Given the substantial variance in the nominal capacity of Li-ion pouch cells used in commercial EV battery packs, accurate estimation of heat generation in these cells is crucial for designing an effective battery thermal management system. Traditional BMS applications have typically relied on simplistic equivalent circuit models, which often fail to capture complex thermal behaviors. The advent of cloud-based BMS platforms has introduced the possibility of leveraging machine learning (ML) models, promising enhanced accuracy and reliability. This study examines the efficacy of four distinct sequential cascaded multi-stage ML regression models in predicting the depth of discharge and heat generation responses of Li-ion cells. Experimental trials were conducted on a prismatic 20-Ah Li-ion battery, subjected to cyclic loading under varying ambient temperatures and C-rates. Heat flux and surface temperature readings were diligently gathered, forming the cornerstone for model development and validation. Utilizing Python's Scikit-learn library, different models were trained and evaluated against the experimental dataset, with the coefficient of determination (R<sup>2</sup>) employed as the performance metric. Among these models, the random forest-based approach demonstrated exceptional proficiency, achieving an R2 score of 0.9994. This result underscores its superiority in accurately capturing the complex thermal and electrical dynamics of Li-ion batteries under diverse operating conditions. The findings highlight the potential of ML-driven approaches to transform BMS design, enabling a more nuanced and accurate understanding of battery behavior, thereby paving the way for safer and more efficient EV battery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Phalaenopsis完成签到,获得积分10
刚刚
zd200572完成签到,获得积分10
1秒前
Jeffery426发布了新的文献求助10
2秒前
yzm发布了新的文献求助10
2秒前
欣喜芙发布了新的文献求助10
3秒前
online1881发布了新的文献求助30
4秒前
朝与暮完成签到,获得积分10
4秒前
乐观的大叔完成签到 ,获得积分10
6秒前
欢呼以柳完成签到,获得积分10
7秒前
LXx完成签到 ,获得积分10
7秒前
无花果应助顺利秋灵采纳,获得10
7秒前
超级核潜艇完成签到 ,获得积分10
7秒前
卫卫完成签到 ,获得积分10
8秒前
8秒前
肉肉完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
douglas完成签到,获得积分10
11秒前
iknj发布了新的文献求助10
11秒前
xiuxiu完成签到 ,获得积分10
12秒前
活泼的寒安完成签到 ,获得积分10
14秒前
14秒前
材料学渣发布了新的文献求助10
15秒前
执着幻桃完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助50
16秒前
zpl完成签到 ,获得积分10
16秒前
wujingshuai完成签到,获得积分10
16秒前
一郭红烧肉应助online1881采纳,获得10
19秒前
19秒前
顺利秋灵发布了新的文献求助10
20秒前
无心的可仁完成签到,获得积分10
22秒前
我是老大应助小章呀采纳,获得10
23秒前
确幸完成签到 ,获得积分10
23秒前
Ch_7完成签到,获得积分10
24秒前
27秒前
27秒前
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789740
求助须知:如何正确求助?哪些是违规求助? 5722835
关于积分的说明 15475357
捐赠科研通 4917509
什么是DOI,文献DOI怎么找? 2647048
邀请新用户注册赠送积分活动 1594699
关于科研通互助平台的介绍 1549180