清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MACHINE LEARNING MODELS FOR PREDICTING ELECTRICAL AND THERMAL BEHAVIOR IN HIGH-CAPACITY LITHIUM-ION BATTERIES

锂(药物) 材料科学 热的 离子 热容 计算机科学 热力学 心理学 化学 物理 精神科 有机化学
作者
T. Maitra,Amit Patra,Anandaroop Bhattacharya
出处
期刊:Heat transfer research [Begell House Inc.]
卷期号:57 (1): 41-97 被引量:1
标识
DOI:10.1615/heattransres.2025058959
摘要

The rising prominence of EVs has substantially increased the demand for high-capacity, rechargeable Li-ion batteries, necessitating advanced BMS to ensure reliable and optimized operational performance. Central to BMS functionality is the precise modeling of Li-ion battery behavior, particularly their thermal and electrical dynamics. Given the substantial variance in the nominal capacity of Li-ion pouch cells used in commercial EV battery packs, accurate estimation of heat generation in these cells is crucial for designing an effective battery thermal management system. Traditional BMS applications have typically relied on simplistic equivalent circuit models, which often fail to capture complex thermal behaviors. The advent of cloud-based BMS platforms has introduced the possibility of leveraging machine learning (ML) models, promising enhanced accuracy and reliability. This study examines the efficacy of four distinct sequential cascaded multi-stage ML regression models in predicting the depth of discharge and heat generation responses of Li-ion cells. Experimental trials were conducted on a prismatic 20-Ah Li-ion battery, subjected to cyclic loading under varying ambient temperatures and C-rates. Heat flux and surface temperature readings were diligently gathered, forming the cornerstone for model development and validation. Utilizing Python's Scikit-learn library, different models were trained and evaluated against the experimental dataset, with the coefficient of determination (R<sup>2</sup>) employed as the performance metric. Among these models, the random forest-based approach demonstrated exceptional proficiency, achieving an R2 score of 0.9994. This result underscores its superiority in accurately capturing the complex thermal and electrical dynamics of Li-ion batteries under diverse operating conditions. The findings highlight the potential of ML-driven approaches to transform BMS design, enabling a more nuanced and accurate understanding of battery behavior, thereby paving the way for safer and more efficient EV battery systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
糊涂的青烟完成签到 ,获得积分10
28秒前
43秒前
orixero应助白华苍松采纳,获得10
45秒前
你是我的唯一完成签到 ,获得积分20
46秒前
隐形曼青应助cccc4869采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
殷勤的紫槐应助科研通管家采纳,获得200
1分钟前
2分钟前
王誉霖发布了新的文献求助10
2分钟前
HHM完成签到,获得积分10
2分钟前
2分钟前
医研完成签到 ,获得积分10
3分钟前
3分钟前
坦率的惊蛰完成签到,获得积分10
3分钟前
3分钟前
王誉霖发布了新的文献求助10
3分钟前
王誉霖完成签到,获得积分10
3分钟前
宇文雨文完成签到 ,获得积分10
3分钟前
3分钟前
无与伦比完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
thurman应助科研通管家采纳,获得10
5分钟前
thurman应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
Arctic完成签到 ,获得积分10
6分钟前
xhsz1111完成签到 ,获得积分10
6分钟前
posh完成签到 ,获得积分10
6分钟前
明理的依柔完成签到,获得积分10
6分钟前
文明8完成签到 ,获得积分10
7分钟前
7分钟前
cccc4869发布了新的文献求助10
7分钟前
7分钟前
cccc4869完成签到,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539027
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597027
捐赠科研通 4566687
什么是DOI,文献DOI怎么找? 2503493
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1452976