亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power

风力发电 计算机科学 风电预测 人工智能 功率(物理) 机器学习 电力系统 工程类 物理 量子力学 电气工程
作者
Lin Ye,Yishu Peng,Yilin Li,Zhuo Li
出处
期刊:Applied Energy [Elsevier BV]
卷期号:364: 123182-123182 被引量:8
标识
DOI:10.1016/j.apenergy.2024.123182
摘要

With the rapid growth of wind power penetration, its inherent stochasticity and uncertainty will seriously affect the stable operation of power systems. How to effectively characterize the uncertainty of wind power is a great challenge for day-ahead power system dispatching, scenario generation is an important method to describe the uncertainty of wind power. Currently, most of the wind power scenarios are generated using a generative adversarial network with two-dimensional convolution as the main structure, which may make it difficult to adequately characterize the temporal features, the day-ahead mode properties, and seasonality of wind power. In this paper, we first establish an auxiliary classification time-series generation adversarial network based on error stratification, construct the numerical characteristic conditional labels that can reflect the fluctuation characteristics of day-ahead wind power and power output level, and design the temporal embedding function that captures the seasonal characteristics of wind power. On this basis, to fully extract the dynamic variation characteristics and global effective information of wind power prediction error sequences, Informer is combined with a time-series generative adversarial network, and a joint loss function incorporating supervised learning and unsupervised learning is constructed. Subsequently, the generated set of prediction error sequences is superimposed with the day-ahead predicted value of wind power to obtain the day-ahead wind power scenario set. Finally, to verify the effectiveness of the proposed method, two datasets from different geographic locations are used to comprehensively evaluate the generated day-ahead wind power scenario set in terms of three aspects: temporal correlation characteristics, fluctuation characteristics, and accuracy. The experimental results indicate that the scenario generation method proposed can improve the quality of the day-ahead wind power scenario set and has an excellent performance in describing wind power uncertainty compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bc应助科研通管家采纳,获得20
刚刚
7秒前
12秒前
apt完成签到 ,获得积分10
31秒前
39秒前
41秒前
Eric800824完成签到 ,获得积分10
46秒前
辛勤夜柳发布了新的文献求助20
47秒前
科研通AI5应助害怕的盼芙采纳,获得10
1分钟前
害怕的盼芙完成签到,获得积分20
1分钟前
getgetting留下了新的社区评论
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
迎雪完成签到,获得积分10
2分钟前
郗妫完成签到,获得积分10
2分钟前
可爱的函函应助getgetting采纳,获得10
2分钟前
飘逸的飞丹完成签到 ,获得积分10
3分钟前
3分钟前
zzzyyy发布了新的文献求助10
3分钟前
大个应助科研通管家采纳,获得10
4分钟前
Benhnhk21发布了新的文献求助10
4分钟前
4分钟前
yy发布了新的文献求助10
4分钟前
4分钟前
yy完成签到,获得积分10
4分钟前
Benhnhk21发布了新的文献求助10
4分钟前
小白菜完成签到,获得积分10
5分钟前
六六完成签到 ,获得积分10
5分钟前
Benhnhk21发布了新的文献求助10
5分钟前
5分钟前
852应助科研通管家采纳,获得10
6分钟前
bc应助科研通管家采纳,获得20
6分钟前
直率芮完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
getgetting发布了新的文献求助10
6分钟前
牛八先生完成签到,获得积分10
6分钟前
Linden_bd完成签到 ,获得积分10
6分钟前
6分钟前
无花果应助hyhyhyhy采纳,获得10
6分钟前
6分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346469
关于积分的说明 10329359
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714