MAMLCDA: A Meta-Learning Model for Predicting circRNA-Disease Association Based on MAML Combined With CNN

计算机科学 人工智能 水准点(测量) 模式识别(心理学) 特征(语言学) 相似性(几何) 特征向量 主成分分析 概率逻辑 深度学习 降维 机器学习 数据挖掘 计算生物学 图像(数学) 生物 语言学 哲学 大地测量学 地理
作者
Yuanyi Tian,Quan Zou,Chunyu Wang,Cangzhi Jia
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4325-4335 被引量:6
标识
DOI:10.1109/jbhi.2024.3385352
摘要

Circular RNAs (circRNAs) exist in vivo and are a class of noncoding RNA molecules. They have a single-stranded, closed, annular structure. Many studies have shown that circRNAs and diseases are linked. Therefore, it is critical to build a reliable and accurate predictor to find the circRNA-disease association. In this paper, we presented a meta-learning model named MAMLCDA to identify the circRNA-disease association, which is based on model-agnostic meta-learning (MAML) combined with CNN classification. Specifically, similarities between diseases and circRNAs are extracted and integrated to characterize their relationships, and k-means is used to cluster majority samples and select a certain number of samples from each cluster to obtain the same number of negative samples as the positive samples. To further reduce the dimension of the features and save operation time, we applied probabilistic principal component analysis (PPCA) to compact the integrated circRNA and disease similarity network feature vectors. The feature vectors are converted into images. At this time, the prediction problem is transformed into the 2-way 1-shot problem of the image and input into the model with MAML as the meta-learner and CNN as the base-learner. Comparison results of five-fold cross-validation on two benchmark datasets illustrate that MAMLCDA outperforms several state-of-the-art approaches with the best accuracies of 95.33% and 98%. Therefore, MAMLCDA can help to understand the pathogenesis of complex diseases at the circRNA level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangrr发布了新的文献求助10
3秒前
Akim应助可爱非笑采纳,获得10
3秒前
11完成签到 ,获得积分10
4秒前
大模型应助单纯的访冬采纳,获得10
5秒前
Lucas应助科研强采纳,获得10
5秒前
planto完成签到,获得积分10
8秒前
南汉高贵的陈皮完成签到 ,获得积分10
9秒前
11秒前
Vlory完成签到 ,获得积分10
11秒前
哈哈完成签到,获得积分10
11秒前
12秒前
wuxunxun2015完成签到,获得积分10
14秒前
传奇3应助CH采纳,获得10
16秒前
WDD完成签到,获得积分10
17秒前
研友_8yPY0Z发布了新的文献求助10
19秒前
爱学习的婷完成签到 ,获得积分10
19秒前
27秒前
swimming关注了科研通微信公众号
28秒前
Ayanami发布了新的文献求助10
31秒前
术士发布了新的文献求助10
32秒前
wangrr完成签到,获得积分10
32秒前
Ayanami完成签到,获得积分10
36秒前
38秒前
41秒前
42秒前
44秒前
在水一方发布了新的文献求助10
47秒前
舒适的晓山完成签到 ,获得积分10
48秒前
陌上之心完成签到 ,获得积分10
49秒前
Ingrid_26发布了新的文献求助10
49秒前
CH发布了新的文献求助10
49秒前
Amy完成签到,获得积分10
50秒前
jessicazhong完成签到,获得积分10
51秒前
51秒前
在水一方完成签到,获得积分10
52秒前
bc应助皮毛柔软的猫采纳,获得30
53秒前
归尘应助皮毛柔软的猫采纳,获得10
53秒前
53秒前
wrr应助皮毛柔软的猫采纳,获得10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211549
捐赠科研通 3038120
什么是DOI,文献DOI怎么找? 1667117
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103