超材料
耗散系统
非线性系统
物理
光学
量子力学
作者
Alessandro Fortunati,Andrea Arena,Marco Lepidi,Andrea Bacigalupo,Walter Lacarbonara
标识
DOI:10.1098/rspa.2023.0759
摘要
This paper deals with the free propagation problem of resonant and close-to-resonance waves in one-dimensional lattice metamaterials endowed with nonlinearly viscoelastic resonators. The resonators' constitutive and geometric nonlinearities imply a cubic coupling with the lattice. The analytical treatment of the nonlinear wave propagation equations is carried out via a perturbation approach. In particular, after a suitable reformulation of the problem in the Hamiltonian setting, the approach relies on the well-known resonant normal form techniques from Hamiltonian perturbation theory. It is shown how the constructive features of the Lie Series formalism can be exploited in the explicit computation of the approximations of the invariant manifolds. A discussion of the metamaterial dynamic stability, either in the general or in the weak dissipation case, is presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI