Assessing the improvement potentials of climate model partitioning and time-variant feature extraction for soil organic carbon prediction

土壤碳 环境科学 萃取(化学) 土壤科学 特征(语言学) 总有机碳 土壤水分 环境化学 化学 语言学 哲学 色谱法
作者
Yilin Bao,Xiangtian Meng,Huanjun Liu,Xianglei Meng,Mingming Xing,Dan Cao,Jiahua Zhang,Fengmei Yao
出处
期刊:Catena [Elsevier BV]
卷期号:241: 108014-108014 被引量:2
标识
DOI:10.1016/j.catena.2024.108014
摘要

The monitoring of soil organic carbon (SOC) content is of significance for the global carbon cycle and the sustainability of soil quality under climate change. SOC prediction based on multi-source remote sensing data has been integrated well into different local regression strategies and model algorithms. However, the application of mixing local regression strategies with high generalizability and extracting more advanced information from time-variant data are rare. Here, we propose a climate model partitioning strategy, compared to common local regression strategies (soil classification and spectral clustering), with the aim of improving the accuracy of regional SOC content prediction. In this study, 1248 topsoil samples were collected in Northeast China. Environmental covariates representing soil-forming elements of meteorology, organisms, terrain and parent materials factors were explored, and then different time-variant covariate pre-processing were performed, and form Dataset I (conventional mean values of covariates) and Dataset II (shapelet features extracted from covariates) according to the data type. Next, we explored the effectiveness of global regression and local regression strategies (soil classification and five scenarios of Shared Socio-economic Pathways (SSPs)-based ant colony optimization clustering) for SOC prediction with a convolutional neural network (CNN) model. The results demonstrated that the optimal SOC content prediction model with the SSP245 local regression strategy and Dataset II as input yielded the lowest root mean square error (RMSE) of 5.83 g kg−1, the highest coefficient of determination (R2) and a ratio of performance to interquartile distance (RPIQ) of 0.73 and 1.99, respectively. Second, the order of SOC prediction accuracy among the different regression strategies was SSP245 > SSP119 > SSP370 > soil classification > SSP126 > SSP585 > global regression. Third, compared with Dataset I, the CNN model-based Dataset II had a 12 % increase in average R2 values, a 5.27 % decrease in RMSE, and a 4.27 % increase in RPIQ, which indicates that the shapelet feature extraction algorithm could better mine the information of time-variant variables in SOC content assessment. Finally, we identified that CNN could perform better in regions with low spatial heterogeneity. Our results suggest that the paradigm of "local regression + feature extraction" has great potential for SOC prediction and mapping, especially for larger scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
个性书翠发布了新的文献求助10
1秒前
Yvette发布了新的文献求助10
1秒前
一帆风顺发布了新的文献求助10
2秒前
FashionBoy应助smaliver采纳,获得30
3秒前
5秒前
Tink完成签到,获得积分10
6秒前
6秒前
内向白开水完成签到,获得积分10
6秒前
8秒前
hyl发布了新的文献求助10
10秒前
少雄完成签到,获得积分10
14秒前
文艺臻完成签到,获得积分10
19秒前
20秒前
无辜白桃完成签到 ,获得积分10
21秒前
21秒前
打打应助pinklay采纳,获得10
23秒前
Hudan完成签到,获得积分10
24秒前
个性书翠发布了新的文献求助10
25秒前
野火197完成签到,获得积分10
26秒前
Orange应助害羞芷蕾采纳,获得30
26秒前
春衫发布了新的文献求助10
26秒前
Akim应助平常的兔子采纳,获得10
27秒前
十八发布了新的文献求助10
27秒前
无辜白桃关注了科研通微信公众号
27秒前
27秒前
慕青应助肥而不腻的羚羊采纳,获得10
29秒前
xiaohu完成签到,获得积分10
30秒前
oldjeff发布了新的文献求助10
31秒前
32秒前
xz完成签到 ,获得积分10
35秒前
西cheng发布了新的文献求助10
35秒前
大个应助春衫采纳,获得10
38秒前
38秒前
明月发布了新的文献求助10
41秒前
黑小虎发布了新的文献求助10
42秒前
科研通AI5应助求助人采纳,获得20
43秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844974
求助须知:如何正确求助?哪些是违规求助? 3387193
关于积分的说明 10548004
捐赠科研通 3107875
什么是DOI,文献DOI怎么找? 1712196
邀请新用户注册赠送积分活动 824280
科研通“疑难数据库(出版商)”最低求助积分说明 774683