Electromechanical coupling modeling and motor current signature analysis of bolt loosening of industrial robot joint

签名(拓扑) 接头(建筑物) 联轴节(管道) 机器人 电流(流体) 工程类 结构工程 万向节 机械工程 计算机科学 电气工程 人工智能 数学 几何学
作者
Kai Xu,Xing Wu,Dongxiao Wang,Xiaoqin Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:184: 109681-109681 被引量:36
标识
DOI:10.1016/j.ymssp.2022.109681
摘要

Since loosening of the bolt connection reduce the stability and working accuracy of industrial robot joint, developing and applying new detection methods to provide effective and reliable diagnosis is still a challenging task. In this study, a detection method for bolt loosening of industrial robot joint based on electromechanical modeling and motor current signature analysis (MCSA) is proposed. Firstly, a dynamics model is established based on the electromechanical coupling characteristics of the robot joint servo system, and the bolt loosening factor in the model is equivalent to the variations of support stiffness. The vibration performance of the system due to bolt loosening is analyzed, and the dynamical equations show the coupling relationship between the motor current and bolt loosening. Then according to the traits of motor current variation, this study proposes to utilize the time–frequency features of the motor current to detect loosening. The energy concentrated time–frequency representation (TFR) is obtained by the synchrosqueezing transform (SST) method, and then time–frequency ridges are extracted. The features of the time–frequency ridges are adopted as indicators of the bolt loosening. The support vector machine (SVM) classifier is utilized to identify the loosening of bolts. The simulated motor current signal analysis shows that the SST can highlight the current transients caused by bolt loosening. The bolt loosening experiment is conducted on the single-degree-of-freedom servo joint test bench, and the results prove the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Simms完成签到,获得积分10
1秒前
1秒前
ccmxigua发布了新的文献求助10
3秒前
2799发布了新的文献求助10
4秒前
机灵山水完成签到,获得积分10
5秒前
潇洒萝发布了新的文献求助10
5秒前
6秒前
xuexue完成签到,获得积分10
8秒前
丁丁发布了新的文献求助20
8秒前
10秒前
10秒前
wanci应助开心的火龙果采纳,获得10
11秒前
彭佳丽发布了新的文献求助10
12秒前
12秒前
13秒前
koi发布了新的文献求助10
15秒前
jzx发布了新的文献求助10
15秒前
李健的小迷弟应助Khan采纳,获得10
16秒前
Hightowerliu18完成签到,获得积分0
17秒前
17秒前
xixi发布了新的文献求助10
17秒前
17秒前
瑶瑶完成签到,获得积分10
19秒前
酒酒完成签到,获得积分10
20秒前
20秒前
21秒前
舒心亦凝发布了新的文献求助10
21秒前
Avicii完成签到 ,获得积分10
21秒前
hho驳回了充电宝应助
23秒前
zzz完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
瑶瑶发布了新的文献求助10
24秒前
bkagyin应助开心的火龙果采纳,获得10
27秒前
Licy发布了新的文献求助10
27秒前
28秒前
Matt发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309087
求助须知:如何正确求助?哪些是违规求助? 4453900
关于积分的说明 13858616
捐赠科研通 4341678
什么是DOI,文献DOI怎么找? 2384123
邀请新用户注册赠送积分活动 1378659
关于科研通互助平台的介绍 1346681