Breast cancer detection using deep learning: Datasets, methods, and challenges ahead

乳腺摄影术 人工智能 磁共振成像 医学 深度学习 乳腺癌 射线照相术 阶段(地层学) 放射科 机器学习 计算机科学 癌症 医学物理学 内科学 古生物学 生物
作者
Nusrat Mohi Ud Din,Rayees Ahmad Dar,Muzafar Rasool,Assif Assad
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 106073-106073 被引量:175
标识
DOI:10.1016/j.compbiomed.2022.106073
摘要

Breast Cancer (BC) is the most commonly diagnosed cancer and second leading cause of mortality among women. About 1 in 8 US women (about 13%) will develop invasive BC throughout their lifetime. Early detection of this life-threatening disease not only increases the survival rate but also reduces the treatment cost. Fortunately, advancements in radiographic imaging like "Mammograms", "Computed Tomography (CT)", "Magnetic Resonance Imaging (MRI)", "3D Mammography", and "Histopathological Imaging (HI)" have made it feasible to diagnose this life-taking disease at an early stage. However, the analysis of radiographic images and Histopathological images is done by experienced radiologists and pathologists, respectively. The process is not only costly but also error-prone. Over the last ten years, Computer Vision and Machine Learning (ML) have transformed the world in every way possible. Deep learning (DL), a subfield of ML has shown outstanding results in a variety of fields, particularly in the biomedical industry, because of its ability to handle large amounts of data. DL techniques automatically extract the features by analyzing the high dimensional and correlated data efficiently. The potential and ability of DL models have also been utilized and evaluated in the identification and prognosis of BC, utilizing radiographic and Histopathological images, and have performed admirably. However, AI has shown good claims in retrospective studies only. External validations are needed for translating these cutting-edge AI tools as a clinical decision maker. The main aim of this research work is to present the critical analysis of the research and findings already done to detect and classify BC using various imaging modalities including "Mammography", "Histopathology", "Ultrasound", "PET/CT", "MRI", and "Thermography". At first, a detailed review of the past research papers using Machine Learning, Deep Learning and Deep Reinforcement Learning for BC classification and detection is carried out. We also review the publicly available datasets for the above-mentioned imaging modalities to make future research more accessible. Finally, a critical discussion section has been included to elaborate open research difficulties and prospects for future study in this emerging area, demonstrating the limitations of Deep Learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
今后应助淡然的鸿煊采纳,获得10
3秒前
金熙美发布了新的文献求助10
4秒前
tom完成签到,获得积分10
5秒前
爱读文献的饼猪完成签到,获得积分10
5秒前
乐乐应助清脆的书桃采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
ZhouYW应助科研通管家采纳,获得20
6秒前
思源应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
ZhouYW应助科研通管家采纳,获得20
6秒前
7秒前
7秒前
7秒前
7秒前
tom发布了新的文献求助10
8秒前
9秒前
HH发布了新的文献求助10
11秒前
土豆拌大茄子完成签到 ,获得积分10
11秒前
13秒前
科研通AI5应助Blue_Pig采纳,获得10
13秒前
科研通AI5应助yangyangzijiajia采纳,获得10
13秒前
白色花海完成签到,获得积分10
14秒前
小王同学完成签到,获得积分10
14秒前
15秒前
玲子7发布了新的文献求助30
17秒前
17秒前
18秒前
19秒前
想要毕业发布了新的文献求助10
20秒前
十里八乡俊后生完成签到,获得积分10
20秒前
tigerli发布了新的文献求助10
22秒前
22秒前
苹果惠发布了新的文献求助10
24秒前
Boyce完成签到,获得积分10
25秒前
研友_VZG7GZ应助SXYYXS采纳,获得10
26秒前
Xiaoxiannv完成签到,获得积分10
26秒前
想要毕业完成签到,获得积分10
27秒前
自不惊扰完成签到,获得积分10
27秒前
GatlingChong完成签到,获得积分10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214