清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Breast cancer detection using deep learning: Datasets, methods, and challenges ahead

乳腺摄影术 人工智能 磁共振成像 医学 深度学习 乳腺癌 射线照相术 阶段(地层学) 放射科 机器学习 计算机科学 癌症 医学物理学 内科学 古生物学 生物
作者
Nusrat Mohi Ud Din,Rayees Ahmad Dar,Muzafar Rasool,Assif Assad
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:149: 106073-106073 被引量:284
标识
DOI:10.1016/j.compbiomed.2022.106073
摘要

Breast Cancer (BC) is the most commonly diagnosed cancer and second leading cause of mortality among women. About 1 in 8 US women (about 13%) will develop invasive BC throughout their lifetime. Early detection of this life-threatening disease not only increases the survival rate but also reduces the treatment cost. Fortunately, advancements in radiographic imaging like "Mammograms", "Computed Tomography (CT)", "Magnetic Resonance Imaging (MRI)", "3D Mammography", and "Histopathological Imaging (HI)" have made it feasible to diagnose this life-taking disease at an early stage. However, the analysis of radiographic images and Histopathological images is done by experienced radiologists and pathologists, respectively. The process is not only costly but also error-prone. Over the last ten years, Computer Vision and Machine Learning (ML) have transformed the world in every way possible. Deep learning (DL), a subfield of ML has shown outstanding results in a variety of fields, particularly in the biomedical industry, because of its ability to handle large amounts of data. DL techniques automatically extract the features by analyzing the high dimensional and correlated data efficiently. The potential and ability of DL models have also been utilized and evaluated in the identification and prognosis of BC, utilizing radiographic and Histopathological images, and have performed admirably. However, AI has shown good claims in retrospective studies only. External validations are needed for translating these cutting-edge AI tools as a clinical decision maker. The main aim of this research work is to present the critical analysis of the research and findings already done to detect and classify BC using various imaging modalities including "Mammography", "Histopathology", "Ultrasound", "PET/CT", "MRI", and "Thermography". At first, a detailed review of the past research papers using Machine Learning, Deep Learning and Deep Reinforcement Learning for BC classification and detection is carried out. We also review the publicly available datasets for the above-mentioned imaging modalities to make future research more accessible. Finally, a critical discussion section has been included to elaborate open research difficulties and prospects for future study in this emerging area, demonstrating the limitations of Deep Learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大又蓝发布了新的文献求助10
1秒前
潜行者完成签到 ,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
32秒前
bingo完成签到,获得积分10
1分钟前
重庆森林完成签到,获得积分10
1分钟前
Ada完成签到 ,获得积分10
1分钟前
笨笨的怜雪完成签到 ,获得积分10
2分钟前
CodeCraft应助水雾采纳,获得10
2分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
平常以云完成签到 ,获得积分10
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
2分钟前
水雾发布了新的文献求助10
2分钟前
tt完成签到,获得积分10
3分钟前
Fairy完成签到,获得积分10
3分钟前
鹏程万里完成签到,获得积分10
4分钟前
暗号完成签到 ,获得积分0
4分钟前
LJJ完成签到,获得积分10
4分钟前
慕青应助研友_8RyzBZ采纳,获得10
5分钟前
ljl86400完成签到,获得积分10
5分钟前
5分钟前
研友_8RyzBZ发布了新的文献求助10
5分钟前
科研通AI6应助阳光的星月采纳,获得10
6分钟前
大个应助研友_8RyzBZ采纳,获得10
7分钟前
7分钟前
研友_8RyzBZ发布了新的文献求助10
7分钟前
123应助研友_8RyzBZ采纳,获得10
7分钟前
赘婿应助阳光的星月采纳,获得10
7分钟前
外向的妍完成签到,获得积分10
7分钟前
8分钟前
娟子完成签到,获得积分10
8分钟前
8分钟前
lsl应助Atopos采纳,获得30
9分钟前
Criminology34应助Atopos采纳,获得10
10分钟前
10分钟前
10分钟前
11分钟前
嘟嘟完成签到 ,获得积分10
11分钟前
Aray完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635162
求助须知:如何正确求助?哪些是违规求助? 4735022
关于积分的说明 14989826
捐赠科研通 4792862
什么是DOI,文献DOI怎么找? 2559967
邀请新用户注册赠送积分活动 1520215
关于科研通互助平台的介绍 1480311