Laplacian Salience-Gated Feature Pyramid Network for Accurate Liver Vessel Segmentation

分割 计算机科学 人工智能 显著性(神经科学) 特征(语言学) 棱锥(几何) 模式识别(心理学) 掷骰子 计算机视觉 数学 几何学 语言学 哲学
作者
Zhan Gao,Qiuhao Zong,Yiqi Wang,Yan Yan,Yuqing Wang,Ning Zhu,Jin Zhang,Yunfu Wang,Liang Zhao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 3059-3068 被引量:18
标识
DOI:10.1109/tmi.2023.3273528
摘要

Liver vessels generated from computed tomography are usually pretty small, which poses major challenges for satisfactory vessel segmentation, including 1) the scarcity of high-quality and large-volume vessel masks, 2) the difficulty in capturing vessel-specific features, and 3) the heavily imbalanced distribution of vessels and liver tissues. To advance, a sophisticated model and an elaborated dataset have been built. The model has a newly conceived Laplacian salience filter that highlights vessel-like regions and suppresses other liver regions to shape the vessel-specific feature learning and to balance vessels against others. It is further coupled with a pyramid deep learning architecture to capture different levels of features, thus improving the feature formulation. Experiments show that this model markedly outperforms the state-of-the-art approaches, achieving a relative improvement of Dice score by at least 1.63% compared to the existing best model on available datasets. More promisingly, the averaged Dice score produced by the existing models on the newly constructed dataset is as high as 0.734±0.070 , which is at least 18.3% higher than that obtained from the existing best dataset under the same settings. These observations suggest that the proposed Laplacian salience, together with the elaborated dataset, can be helpful for liver vessel segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zhang115发布了新的文献求助20
刚刚
刚刚
大龙哥886应助cmcm采纳,获得10
2秒前
ding应助cmcm采纳,获得10
2秒前
2秒前
2秒前
Raine完成签到,获得积分10
3秒前
乐乐应助杰克采纳,获得10
4秒前
蓝胖子完成签到 ,获得积分10
4秒前
wasd发布了新的文献求助10
4秒前
5秒前
打打应助Kiosta采纳,获得10
5秒前
6秒前
风华正茂完成签到 ,获得积分10
6秒前
6秒前
zcb发布了新的文献求助10
6秒前
111完成签到,获得积分10
6秒前
冬瓜完成签到,获得积分10
6秒前
zhang发布了新的文献求助100
7秒前
kathy完成签到,获得积分10
7秒前
qly完成签到,获得积分20
7秒前
科研通AI5应助Cindy165采纳,获得10
7秒前
kai9712完成签到,获得积分10
8秒前
8秒前
9秒前
含糊完成签到 ,获得积分10
9秒前
英俊的铭应助大婷子采纳,获得10
10秒前
sim发布了新的文献求助10
11秒前
称心凡柔完成签到,获得积分10
11秒前
我是老大应助zcb采纳,获得10
11秒前
12秒前
逆旅发布了新的文献求助10
12秒前
12秒前
wasd完成签到,获得积分10
13秒前
wanci应助XiangJi采纳,获得10
13秒前
小土豆完成签到 ,获得积分10
13秒前
快乐的小叮当应助111采纳,获得10
14秒前
希望天下0贩的0应助rr采纳,获得30
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4150651
求助须知:如何正确求助?哪些是违规求助? 3686715
关于积分的说明 11646244
捐赠科研通 3379789
什么是DOI,文献DOI怎么找? 1854763
邀请新用户注册赠送积分活动 916741
科研通“疑难数据库(出版商)”最低求助积分说明 830615