Implicit Ray Transformers for Multiview Remote Sensing Image Segmentation

计算机科学 人工智能 分割 先验概率 杠杆(统计) 计算机视觉 模式识别(心理学) 特征提取 图像分割 贝叶斯概率
作者
Zipeng Qi,Hao Chen,Chenyang Liu,Zhenwei Shi,Zhengxia Zou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:11
标识
DOI:10.1109/tgrs.2023.3285659
摘要

The mainstream CNN-based remote sensing (RS) image semantic segmentation approaches typically rely on massively labeled training data. Such a paradigm struggles with the problem of RS multi-view scene segmentation with limited labeled views due to the lack of consideration of 3D information within the scene. In this paper, we propose "Implicit Ray-Transformer (IRT)" based on Implicit Neural Representation (INR) for RS scene semantic segmentation with sparse labels (5% of the images being labeled). We explore a new way of introducing the multi-view 3D structure priors to the task for accurate and view-consistent semantic segmentation. The proposed method includes a two-stage learning process. In the first stage, we optimize a neural field to encode the color and 3D structure of the remote sensing scene based on multi-view images. In the second stage, we design a Ray Transformer to leverage the relations between the neural field 3D features and 2D texture features for learning better semantic representations. Different from previous methods that only consider 3D priors or 2D features, we incorporate additional 2D texture information and 3D priors by broadcasting CNN features to different point features along the sampled ray. To verify the effectiveness of the proposed method, we construct a challenging dataset containing six synthetic sub-datasets collected from the Carla platform and three real sub-datasets from Google Maps. Experiments show that the proposed method outperforms the CNN-based methods and the state-of-the-art INR-based segmentation methods in quantitative and qualitative metrics. The ablation study shows that under a limited number of fully annotated images, the combination of the 3D structure priors and 2D texture can significantly improve the performance and effectively complete missing semantic information in novel views. Experiments also demonstrate the proposed method could yield geometry-consistent segmentation results against illumination changes and viewpoint changes. Our data and code will be public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助卖萌的秋田采纳,获得10
2秒前
自然芷文发布了新的文献求助10
2秒前
开朗早晨发布了新的文献求助10
2秒前
Hey发布了新的文献求助10
3秒前
施中明发布了新的文献求助10
3秒前
可爱的函函应助莎莎采纳,获得10
4秒前
5秒前
烟雨平生完成签到,获得积分10
5秒前
庄周发布了新的文献求助10
5秒前
fry完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
9秒前
无奈的凌波完成签到 ,获得积分10
10秒前
隔壁老六发布了新的文献求助10
11秒前
自然芷文完成签到,获得积分10
11秒前
12秒前
乐乐应助QX采纳,获得10
13秒前
13秒前
Akim应助开朗早晨采纳,获得10
13秒前
14秒前
14秒前
MYhang发布了新的文献求助10
14秒前
狂野子默完成签到,获得积分10
14秒前
15秒前
够了完成签到 ,获得积分10
15秒前
科研力力发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
17秒前
和尘同光发布了新的文献求助10
17秒前
夏来应助zjj采纳,获得10
18秒前
阿里嘎多发布了新的文献求助10
18秒前
江筱筱完成签到,获得积分10
18秒前
尛瞐慶成发布了新的文献求助10
20秒前
21秒前
21秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826191
求助须知:如何正确求助?哪些是违规求助? 3368614
关于积分的说明 10451355
捐赠科研通 3087956
什么是DOI,文献DOI怎么找? 1698907
邀请新用户注册赠送积分活动 817190
科研通“疑难数据库(出版商)”最低求助积分说明 770065