Learning to Purification for Unsupervised Person Re-Identification

计算机科学 人工智能 无监督学习 特征学习 判别式 机器学习 杠杆(统计) 特征(语言学) 模式识别(心理学) 水准点(测量) 鉴定(生物学) 噪音(视频) 图像(数学) 哲学 语言学 植物 大地测量学 生物 地理
作者
Long Lan,Xiao Teng,Jing Zhang,Xiang Zhang,Dacheng Tao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3338-3353 被引量:37
标识
DOI:10.1109/tip.2023.3278860
摘要

Unsupervised person re-identification is a challenging and promising task in computer vision. Nowadays unsupervised person re-identification methods have achieved great progress by training with pseudo labels. However, how to purify feature and label noise is less explicitly studied in the unsupervised manner. To purify the feature, we take into account two types of additional features from different local views to enrich the feature representation. The proposed multi-view features are carefully integrated into our cluster contrast learning to leverage more discriminative cues that the global feature easily ignored and biased. To purify the label noise, we propose to take advantage of the knowledge of teacher model in an offline scheme. Specifically, we first train a teacher model from noisy pseudo labels, and then use the teacher model to guide the learning of our student model. In our setting, the student model could converge fast with the supervision of the teacher model thus reduce the interference of noisy labels as the teacher model greatly suffered. After carefully handling the noise and bias in the feature learning, our purification modules are proven to be very effective for unsupervised person re-identification. Extensive experiments on three popular person re-identification datasets demonstrate the superiority of our method. Especially, our approach achieves a state-of-the-art accuracy 85.8\% @mAP and 94.5\% @Rank-1 on the challenging Market-1501 benchmark with ResNet-50 under the fully unsupervised setting. The code will be released.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的惊蛰完成签到,获得积分10
1秒前
ccc完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
情怀应助訫藍采纳,获得20
3秒前
3秒前
HM发布了新的文献求助10
3秒前
hua完成签到 ,获得积分10
4秒前
Cat完成签到,获得积分0
5秒前
成就钧完成签到,获得积分10
5秒前
邹长飞发布了新的文献求助10
5秒前
韶邑发布了新的文献求助20
6秒前
renjian完成签到,获得积分10
6秒前
木杉发布了新的文献求助10
6秒前
kkkl完成签到,获得积分20
7秒前
tar发布了新的文献求助10
9秒前
浅池星完成签到,获得积分10
9秒前
10秒前
得一完成签到,获得积分10
12秒前
kkk完成签到,获得积分10
13秒前
852应助HM采纳,获得10
13秒前
ZYN完成签到,获得积分10
14秒前
16秒前
宁夕完成签到 ,获得积分10
16秒前
16秒前
所所应助llwxx采纳,获得10
16秒前
淡淡的白羊完成签到 ,获得积分10
16秒前
iliuyang完成签到,获得积分10
17秒前
pangpang发布了新的文献求助30
18秒前
木杉完成签到,获得积分10
18秒前
Z_Z完成签到,获得积分10
19秒前
科研栾发布了新的文献求助10
21秒前
lin完成签到,获得积分10
21秒前
loong发布了新的文献求助10
21秒前
刘金鑫完成签到,获得积分20
21秒前
缓慢思枫发布了新的文献求助10
23秒前
拼搏的飞薇完成签到,获得积分10
23秒前
24秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881896
求助须知:如何正确求助?哪些是违规求助? 3424201
关于积分的说明 10738318
捐赠科研通 3149220
什么是DOI,文献DOI怎么找? 1737796
邀请新用户注册赠送积分活动 839001
科研通“疑难数据库(出版商)”最低求助积分说明 784208