Learning to Purification for Unsupervised Person Re-Identification

计算机科学 人工智能 无监督学习 特征学习 判别式 机器学习 杠杆(统计) 特征(语言学) 模式识别(心理学) 水准点(测量) 鉴定(生物学) 噪音(视频) 图像(数学) 哲学 生物 植物 语言学 地理 大地测量学
作者
Long Lan,Xiao Teng,Jing Zhang,Xiang Zhang,Dacheng Tao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3338-3353 被引量:37
标识
DOI:10.1109/tip.2023.3278860
摘要

Unsupervised person re-identification is a challenging and promising task in computer vision. Nowadays unsupervised person re-identification methods have achieved great progress by training with pseudo labels. However, how to purify feature and label noise is less explicitly studied in the unsupervised manner. To purify the feature, we take into account two types of additional features from different local views to enrich the feature representation. The proposed multi-view features are carefully integrated into our cluster contrast learning to leverage more discriminative cues that the global feature easily ignored and biased. To purify the label noise, we propose to take advantage of the knowledge of teacher model in an offline scheme. Specifically, we first train a teacher model from noisy pseudo labels, and then use the teacher model to guide the learning of our student model. In our setting, the student model could converge fast with the supervision of the teacher model thus reduce the interference of noisy labels as the teacher model greatly suffered. After carefully handling the noise and bias in the feature learning, our purification modules are proven to be very effective for unsupervised person re-identification. Extensive experiments on three popular person re-identification datasets demonstrate the superiority of our method. Especially, our approach achieves a state-of-the-art accuracy 85.8\% @mAP and 94.5\% @Rank-1 on the challenging Market-1501 benchmark with ResNet-50 under the fully unsupervised setting. The code will be released.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张鹏举发布了新的文献求助10
刚刚
刚刚
可爱的函函应助前世采纳,获得10
1秒前
1秒前
1秒前
核潜艇很优秀应助元谷雪采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
lhtyzcg完成签到,获得积分10
3秒前
纯真三德完成签到,获得积分10
4秒前
柒吾发布了新的文献求助10
5秒前
yoyo完成签到,获得积分10
5秒前
英俊的铭应助外向的口红采纳,获得30
5秒前
Hello应助念姬采纳,获得10
5秒前
科研通AI6应助CBWKEYANTONG123采纳,获得30
6秒前
6秒前
moli完成签到,获得积分10
6秒前
zhangdada发布了新的文献求助30
6秒前
cwj发布了新的文献求助10
7秒前
顿手把其发布了新的文献求助20
7秒前
科研通AI6应助研友_ZGjDYn采纳,获得30
7秒前
8秒前
枣点睡觉发布了新的文献求助10
8秒前
小凯同学完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
JUGG发布了新的文献求助10
9秒前
周山山关注了科研通微信公众号
9秒前
10秒前
DIUI发布了新的文献求助10
10秒前
11秒前
佳佳发布了新的文献求助10
11秒前
暖暖发布了新的文献求助10
12秒前
congguitar发布了新的文献求助10
12秒前
十一发布了新的文献求助10
12秒前
HUUUUI发布了新的文献求助10
12秒前
zhsanji应助Anna采纳,获得20
12秒前
13秒前
xiaohu完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546533
求助须知:如何正确求助?哪些是违规求助? 4632336
关于积分的说明 14626455
捐赠科研通 4574000
什么是DOI,文献DOI怎么找? 2507963
邀请新用户注册赠送积分活动 1484586
关于科研通互助平台的介绍 1455755