Identification of tumor-specific MHC ligands through improved biochemical isolation and incorporation of machine learning

主要组织相容性复合体 计算生物学 MHC I级 癌症免疫疗法 T细胞受体 免疫疗法 生物 抗原 T细胞 癌症研究 癌症 免疫学 遗传学 免疫系统
作者
Shima Mecklenbräuker,Piotr Skoczylas,Paweł Biernat,Badeel Zaghla,Bartłomiej Król-Józaga,Maciej Jasiński,Victor Murcia Pienkowski,Anna Sanecka-Duin,Oliver Popp,Rafał Szatanek,Philipp Mertins,Jan Kaczmarczyk,Agnieszka Blum,Martin G. Klatt
标识
DOI:10.1101/2023.06.08.544182
摘要

Abstract Isolation of MHC ligands and subsequent analysis by mass spectrometry is considered the gold standard for defining targets for TCR-T immunotherapies. However, as many targets of high tumor-specificity are only presented at low abundance on the cell surface of tumor cells, the efficient isolation of these peptides is crucial for their successful detection. Here, we demonstrate how different isolation strategies, which consider hydrophobicity and post-translational modifications, can improve the detection of MHC ligands, including cysteinylated MHC ligands from cancer germline antigens or point-mutated neoepitopes. Furthermore, we developed a novel MHC class I ligand prediction algorithm (ARDisplay-I) that outperforms the current state-of-the-art and facilitates the assignment of peptides to the correct MHC allele. The model has other applications, such as the identification of additional MHC ligands not detected from mass spectrometry or determining whether the MHC ligands can be presented on the cell surface via MHC alleles not included in the study. The implementation of these strategies can augment the development of T cell receptor-based therapies (i.a. TIL 1 -derived T cells, genetically engineered T cells expressing tumor recognizing receptors or TCR-mimic antibodies) by facilitating the identification of novel immunotherapy targets and by enriching the resources available in the field of computational immunology. Significance: This study demonstrates how the isolation of different tumor-specific MHC ligands can be optimized when considering their hydrophobicity and post-translational modification status. Additionally, we developed a novel machine-learning model for the probability prediction of the MHC ligands’ presentation on the cell surface. The algorithm can assign these MHC ligands to their respective MHC alleles which is essential for the design of TCR-T immunotherapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KKK完成签到,获得积分10
2秒前
4秒前
洁净思枫发布了新的文献求助10
4秒前
luoyeyijiu发布了新的文献求助10
5秒前
踏实仙人掌完成签到,获得积分20
5秒前
bkagyin应助yhp采纳,获得10
7秒前
7秒前
oxfocean完成签到,获得积分20
9秒前
11秒前
12秒前
15秒前
寒川厚发布了新的文献求助20
15秒前
17秒前
小高同学发布了新的文献求助10
17秒前
mxp发布了新的文献求助10
18秒前
19秒前
yhp发布了新的文献求助10
20秒前
罗亚亚完成签到,获得积分10
20秒前
王哇噻完成签到 ,获得积分10
22秒前
zhouti497541171完成签到,获得积分10
22秒前
23秒前
LZY完成签到,获得积分10
24秒前
X10230发布了新的文献求助10
24秒前
新鲜事完成签到,获得积分10
25秒前
彭于晏应助FeliciaLee采纳,获得10
26秒前
如意听安完成签到,获得积分20
26秒前
28秒前
搬砖王完成签到,获得积分10
28秒前
睡到自然醒完成签到 ,获得积分10
31秒前
脑洞疼应助X10230采纳,获得10
32秒前
薛定谔的猫完成签到,获得积分10
33秒前
乐乐应助清话鹿酒采纳,获得30
33秒前
苹果清涟完成签到,获得积分10
34秒前
汉堡包应助开朗怜菡采纳,获得10
35秒前
36秒前
Pattis完成签到 ,获得积分10
36秒前
爱听歌的亦玉完成签到,获得积分10
39秒前
淡然的芷荷完成签到 ,获得积分10
40秒前
41秒前
抚远关注了科研通微信公众号
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776447
求助须知:如何正确求助?哪些是违规求助? 4108299
关于积分的说明 12708394
捐赠科研通 3829447
什么是DOI,文献DOI怎么找? 2112613
邀请新用户注册赠送积分活动 1136450
关于科研通互助平台的介绍 1020124