Hybrid attention generative adversarial network: texture inpainting algorithm for iris defects with excellent repair performance and generalization

修补 计算机科学 人工智能 编码器 特征(语言学) 增采样 模式识别(心理学) 虹膜识别 自编码 像素 一般化 人工神经网络 算法 计算机视觉 图像(数学) 数学 数学分析 生物识别 语言学 哲学 操作系统
作者
Ying Chen,Yugang Zeng,Liang Xu,Shuang Guo,Huimin Gan
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (03) 被引量:1
标识
DOI:10.1117/1.jei.32.3.033028
摘要

Iris defect texture inpainting is a challenging problem that is not only limited by a lack of research but also by requiring a higher degree of texture refinement than other types of images. In the field of image inpainting, most recent research has focused on designing improved encoder-decoder models. Solving the image blurring problem caused by autoencoder models has become a key factor in judging their merits. Generative adversarial networks were designed based on a hybrid attention generative adversarial network (Hybrid A-GAN) mechanism to repair missing iris textures. The generator is based on the encoder-decoder structure and introduces two attention mechanisms to enable obtaining the correlation between channels in the feature map and pixel importance in space, which enhances the network’s ability to utilize feature information. Moreover, the improved jump connection effectively fuses the high-level features with the low-level features after weighting, which prevents the information loss caused by the downsampling process and enhances the image generation capability. In addition, the joint Wasserstein generative adversarial network-gradient penalty and L1 loss jointly guide network training, which further enhances network generation performance and ensures global consistency of the generated images. Extensive repair experiments and recognition experiments conducted on three publicly available datasets demonstrated that hybrid A-GAN has excellent repair capability and generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
在水一方应助believe采纳,获得10
4秒前
6秒前
7秒前
反向大笨钟完成签到,获得积分10
7秒前
在水一方应助温暖的蚂蚁采纳,获得10
7秒前
fzy发布了新的文献求助10
8秒前
Hello应助迅速勒采纳,获得10
8秒前
blueblue发布了新的文献求助10
9秒前
wwz发布了新的文献求助10
10秒前
10秒前
12秒前
Liszet发布了新的文献求助50
12秒前
珂伟完成签到,获得积分10
12秒前
宋志远完成签到,获得积分10
13秒前
李爱国应助大力紫萱采纳,获得10
13秒前
huangbaba11完成签到 ,获得积分10
14秒前
小肚肚发布了新的文献求助10
14秒前
15秒前
烟花应助honey采纳,获得10
15秒前
秀丽的曼雁完成签到,获得积分10
15秒前
Fluoxetine发布了新的文献求助10
16秒前
无花果应助Bonnienuit采纳,获得50
18秒前
19秒前
王小西发布了新的文献求助10
19秒前
CipherSage应助学术小白采纳,获得10
19秒前
顾翩翩完成签到,获得积分10
20秒前
小何0404发布了新的文献求助10
22秒前
我恨面条子完成签到 ,获得积分10
23秒前
rainny完成签到,获得积分10
23秒前
Adam完成签到,获得积分10
24秒前
25秒前
26秒前
谨慎的乐天完成签到,获得积分10
27秒前
29秒前
桐桐应助rainny采纳,获得10
29秒前
29秒前
帅的罪鸽认了完成签到,获得积分10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843657
求助须知:如何正确求助?哪些是违规求助? 3385947
关于积分的说明 10543274
捐赠科研通 3106748
什么是DOI,文献DOI怎么找? 1711147
邀请新用户注册赠送积分活动 823921
科研通“疑难数据库(出版商)”最低求助积分说明 774390