A Comparison of Neural Network and Expert Systems Algorithms with Common Multivariate Procedures for Analysis of Social Science Data

计算机科学 人工神经网络 线性判别分析 人工智能 机器学习 推论 数据挖掘 路径分析(统计学) 统计推断 专家系统 反向传播 统计 数学
作者
G. David Garson
出处
期刊:Social Science Computer Review [SAGE Publishing]
卷期号:9 (3): 399-434 被引量:90
标识
DOI:10.1177/089443939100900304
摘要

New computer techniques for data analysis, notably the algorithms associated with neural networks and with expert systems, have not caught on to a significant extent in social science. To appraise these developments, an empirical assessment is conducted in which expert systems and neural network approaches are compared with multiple linear regression, logistic regression, effects analysis, path analysis, and discriminant analysis. A simple method of partitioning neural network output layer connections in terms of input nodes (corresponding to independent variables) is also presented, allowing neural net analysis for modeling as well as classification purposes. It is concluded that back-propagation (neural networks) is more effective than other procedures, sometimes strikingly so, in correctly classifying the dependent, even when the amount of noise in the model is high. Back-propagation was of less help, however, in causal inference. None of the techniques performed well by this important criterion. The ID3 algorithm is found to provide a useful mode of knowledge representation quite different from other procedures. While this may be preferred by some analysts for certain types of research, ID3 is not consistently superior to procedures in the multiple linear general model (MLGH) family in terms of effectiveness, either for classification or for causal inference. Keywords: statistical inference, computers, modeling, simulation, regression, discriminant analysis, effects analysis, path analysis, expert systems, ID3, neural networks, back-propagation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hsn完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
迷你的珠完成签到,获得积分10
刚刚
碳烤土豆发布了新的文献求助10
刚刚
cici发布了新的文献求助10
刚刚
刚刚
隐形曼青应助六百六十六采纳,获得10
1秒前
breaking发布了新的文献求助10
1秒前
1秒前
典雅易槐关注了科研通微信公众号
2秒前
2秒前
123发布了新的文献求助10
2秒前
2秒前
姜至完成签到,获得积分10
2秒前
星辰大海应助红米空采纳,获得10
2秒前
2秒前
3秒前
大果粒完成签到,获得积分10
3秒前
yjb发布了新的文献求助10
3秒前
打打应助望海采纳,获得10
3秒前
666完成签到,获得积分10
3秒前
LPPQBB应助羽隐岚間采纳,获得30
3秒前
wang完成签到 ,获得积分10
3秒前
夜星沉完成签到,获得积分10
3秒前
Jasper应助坚强白容采纳,获得10
4秒前
4秒前
4秒前
兴奋傲柔完成签到 ,获得积分10
4秒前
甜甜太阳完成签到 ,获得积分10
4秒前
T_KYG完成签到,获得积分10
4秒前
肖肖肖完成签到 ,获得积分10
4秒前
Jasper应助IN采纳,获得10
5秒前
usee完成签到,获得积分10
5秒前
欧阳振完成签到,获得积分10
5秒前
大个应助活力的语堂采纳,获得10
5秒前
梁其杰完成签到,获得积分10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5282645
求助须知:如何正确求助?哪些是违规求助? 4436641
关于积分的说明 13810205
捐赠科研通 4317265
什么是DOI,文献DOI怎么找? 2369713
邀请新用户注册赠送积分活动 1365123
关于科研通互助平台的介绍 1328570