之字形的
热导率
材料科学
空位缺陷
石墨烯
凝聚态物理
石墨烯纳米带
弹道传导
GSM演进的增强数据速率
热的
纳米技术
化学物理
电子
复合材料
化学
热力学
几何学
物理
电信
数学
量子力学
计算机科学
作者
Justin B. Haskins,Alper Kınacı,Cem Sevik,Hâldun Sevinçli,Gianaurelio Cuniberti,Tahir Çağın
出处
期刊:ACS Nano
[American Chemical Society]
日期:2011-03-31
卷期号:5 (5): 3779-3787
被引量:342
摘要
The influence of the structural detail and defects on the thermal and electronic transport properties of graphene nanoribbons (GNRs) is explored by molecular dynamics and non-equilibrium Green's function methods. A variety of randomly oriented and distributed defects, single and double vacancies, Stone−Wales defects, as well as two types of edge form (armchair and zigzag) and different edge roughnesses are studied for model systems similar in sizes to experiments (>100 nm long and >15 nm wide). We observe substantial reduction in thermal conductivity due to all forms of defects, whereas electrical conductance reveals a peculiar defect-type-dependent response. We find that a 0.1% single vacancy concentration and a 0.23% double vacancy or Stone−Wales concentration lead to a drastic reduction in thermal conductivity of GNRs, namely, an 80% reduction from the pristine one of the same width. Edge roughness with an rms value of 7.28 Å leads to a similar reduction in thermal conductivity. Randomly distributed bulk vacancies are also found to strongly suppress the ballistic nature of electrons and reduce the conductance by 2 orders of magnitude. However, we have identified that defects close to the edges and relatively small values of edge roughness preserve the quasi-ballistic nature of electronic transport. This presents a route of independently controlling electrical and thermal transport by judicious engineering of the defect distribution; we discuss the implications of this for thermoelectric performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI