双线性插值
背景(考古学)
集合(抽象数据类型)
计算机科学
联轴节(管道)
贝叶斯概率
鉴定(生物学)
非线性系统
心理学
因果模型
光学(聚焦)
神经科学
人工智能
神经影像学
数学
物理
工程类
古生物学
计算机视觉
程序设计语言
生物
植物
光学
量子力学
机械工程
统计
作者
Karl J. Friston,L. Harrison,W.D. Penny
出处
期刊:NeuroImage
[Elsevier BV]
日期:2003-07-16
卷期号:19 (4): 1273-1302
被引量:4353
标识
DOI:10.1016/s1053-8119(03)00202-7
摘要
In this paper we present an approach to the identification of nonlinear input-state-output systems. By using a bilinear approximation to the dynamics of interactions among states, the parameters of the implicit causal model reduce to three sets. These comprise (1) parameters that mediate the influence of extrinsic inputs on the states, (2) parameters that mediate intrinsic coupling among the states, and (3) [bilinear] parameters that allow the inputs to modulate that coupling. Identification proceeds in a Bayesian framework given known, deterministic inputs and the observed responses of the system. We developed this approach for the analysis of effective connectivity using experimentally designed inputs and fMRI responses. In this context, the coupling parameters correspond to effective connectivity and the bilinear parameters reflect the changes in connectivity induced by inputs. The ensuing framework allows one to characterise fMRI experiments, conceptually, as an experimental manipulation of integration among brain regions (by contextual or trial-free inputs, like time or attentional set) that is revealed using evoked responses (to perturbations or trial-bound inputs, like stimuli). As with previous analyses of effective connectivity, the focus is on experimentally induced changes in coupling (cf., psychophysiologic interactions). However, unlike previous approaches in neuroimaging, the causal model ascribes responses to designed deterministic inputs, as opposed to treating inputs as unknown and stochastic.
科研通智能强力驱动
Strongly Powered by AbleSci AI