循环器
声学
物理
声波
塞曼效应
光学
磁场
量子力学
作者
Romain Fleury,Dimitrios L. Sounas,Caleb F. Sieck,Michael R. Haberman,Andrea Alù
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2014-01-30
卷期号:343 (6170): 516-519
被引量:964
标识
DOI:10.1126/science.1246957
摘要
Acoustic isolation and nonreciprocal sound transmission are highly desirable in many practical scenarios. They may be realized with nonlinear or magneto-acoustic effects, but only at the price of high power levels and impractically large volumes. In contrast, nonreciprocal electromagnetic propagation is commonly achieved based on the Zeeman effect, or modal splitting in ferromagnetic atoms induced by a magnetic bias. Here, we introduce the acoustic analog of this phenomenon in a subwavelength meta-atom consisting of a resonant ring cavity biased by a circulating fluid. The resulting angular momentum bias splits the ring's azimuthal resonant modes, producing giant acoustic nonreciprocity in a compact device. We applied this concept to build a linear, magnetic-free circulator for airborne sound waves, observing up to 40-decibel nonreciprocal isolation at audible frequencies.
科研通智能强力驱动
Strongly Powered by AbleSci AI