亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study

混合模型 潜在类模型 统计 协方差 计量经济学 班级(哲学) 贝叶斯概率 样本量测定 信息标准 人口 贝叶斯信息准则 统计模型 结构方程建模 数学 计算机科学 心理学 人工智能 选型 人口学 社会学
作者
Karen Nylund‐Gibson,Tihomir Asparouhov,Bengt Muthén
出处
期刊:Structural Equation Modeling [Informa]
卷期号:14 (4): 535-569 被引量:10080
标识
DOI:10.1080/10705510701575396
摘要

Abstract Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study population. This article presents the results of a simulation study that examines the performance of likelihood-based tests and the traditionally used Information Criterion (ICs) used for determining the number of classes in mixture modeling. We look at the performance of these tests and indexes for 3 types of mixture models: latent class analysis (LCA), a factor mixture model (FMA), and a growth mixture models (GMM). We evaluate the ability of the tests and indexes to correctly identify the number of classes at three different sample sizes (n = 200, 500, 1,000). Whereas the Bayesian Information Criterion performed the best of the ICs, the bootstrap likelihood ratio test proved to be a very consistent indicator of classes across all of the models considered. ACKNOWLEDGMENTS Karen L. Nylund's research was supported by Grant R01 DA11796 from the National Institute on Drug Abuse (NIDA) and Bengt O. Muthén's research was supported by Grant K02 AA 00230 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA). We thank Mplus for software support, Jacob Cheadle for programming expertise, and Katherine Masyn for helpful comments. Notes 1In general, the within-class covariance structure can be freed to allow within-class item covariance. a Item probabilities for categorical LCA models are specified by the probability in each cell, and the class means for the continuous LCA are specified by the value in parentheses. 2The number random starts for LCA models with categorical outcomes was specified to be "starts = 70 7;" in Mplus. The models with continuous outcomes had differing numbers of random starts. 3It is important to note that when coverage is studied, the random starts option of Mplus should not be used. If it is used, label switching may occur, in that a class for one replication might be represented by another class for another replication, therefore distorting the estimate. 4The models that presented convergence problems were those that were badly misspecified. For example, for the GMM (true k = 3 class model) for n = 500, the convergence rates for the three-, four-, and five-class models were 100%, 87%, and 68%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助三十丶采纳,获得10
1秒前
4秒前
7秒前
fuxiu发布了新的文献求助30
8秒前
9秒前
胡林完成签到,获得积分10
9秒前
胡林发布了新的文献求助10
12秒前
自信号厂完成签到 ,获得积分0
13秒前
正月初九完成签到,获得积分10
14秒前
顾矜应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
叽了咕噜应助科研通管家采纳,获得10
16秒前
刘海清应助科研通管家采纳,获得10
16秒前
andrele应助科研通管家采纳,获得10
16秒前
16秒前
Ava应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
kepler完成签到,获得积分10
17秒前
fuxiu完成签到,获得积分10
20秒前
24秒前
yanzilin完成签到 ,获得积分10
28秒前
wanci应助gbb采纳,获得10
37秒前
41秒前
无极微光应助小聪采纳,获得20
45秒前
科研通AI6应助伊力扎提采纳,获得10
49秒前
宁静火焰完成签到,获得积分10
54秒前
57秒前
NexusExplorer应助李子采纳,获得10
1分钟前
1分钟前
星辰大海应助Eourique采纳,获得30
1分钟前
1分钟前
1分钟前
一张纸发布了新的文献求助10
1分钟前
1分钟前
水水水发布了新的文献求助10
1分钟前
1分钟前
gbb发布了新的文献求助10
1分钟前
1分钟前
李子发布了新的文献求助10
1分钟前
Angela完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628087
求助须知:如何正确求助?哪些是违规求助? 4715380
关于积分的说明 14963538
捐赠科研通 4785720
什么是DOI,文献DOI怎么找? 2555300
邀请新用户注册赠送积分活动 1516636
关于科研通互助平台的介绍 1477100