多线性代数
张量(固有定义)
奇异值分解
张量代数
工具箱
多线性映射
数学
主成分分析
秩(图论)
域代数上的
笛卡尔张量
塔克分解
软件
线性代数
基质(化学分析)
张量分解
计算机科学
纯数学
张量密度
算法
组合数学
数学分析
几何学
广义相对论的精确解
张量场
统计
复合材料
除法代数
过滤代数
材料科学
程序设计语言
乔丹代数
当前代数
作者
Tamara G. Kolda,Brett W. Bader
出处
期刊:Siam Review
[Society for Industrial and Applied Mathematics]
日期:2009-08-06
卷期号:51 (3): 455-500
被引量:9222
摘要
This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or N-way array. Decompositions of higher-order tensors (i.e., N-way arrays with $N \geq 3$) have applications in psycho-metrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI