Machine-learning-guided library design cycle for directed evolution of enzymes: the effects of training data composition on sequence space exploration

定向进化 序列空间 序列(生物学) 定向分子进化 作文(语言) 系列(地层学) 蛋白质工程 功能(生物学) 蛋白质测序 化学空间 计算机科学 培训(气象学) 计算生物学 人工智能 生物 生物信息学 遗传学 数学 肽序列 生物化学 基因 地理 突变体 语言学 古生物学 气象学 哲学 巴拿赫空间 纯数学 药物发现
作者
Yutaka Saitô,Misaki Oikawa,Takumi Sato,Hikaru Nakazawa,Tomoyuki Ito,Tomoshi Kameda,Koji Tsuda,Mitsuo Umetsu
标识
DOI:10.1101/2021.08.13.456323
摘要

Abstract Machine learning (ML) is becoming an attractive tool in mutagenesis-based protein engineering because of its ability to design a variant library containing proteins with a desired function. However, it remains unclear how ML guides directed evolution in sequence space depending on the composition of training data. Here, we present a ML-guided directed evolution study of an enzyme to investigate the effects of a known “highly positive” variant (i.e., variant known to have high enzyme activity) in training data. We performed two separate series of ML-guided directed evolution of Sortase A with and without a known highly positive variant called 5M in training data. In each series, two rounds of ML were conducted: variants predicted by the first round were experimentally evaluated, and used as additional training data for the second-round prediction. The improvements in enzyme activity were comparable between the two series, both achieving enzyme activity 2.2–2.5 times higher than 5M. Intriguingly, the sequences of the improved variants were largely different between the two series, indicating that ML guided the directed evolution to the distinct regions of sequence space depending on the presence/absence of the highly positive variant in the training data. This suggests that the sequence diversity of improved variants can be expanded not only by conventional ML using the whole training data, but also by ML using a subset of the training data even when it lacks highly positive variants. In summary, this study demonstrates the importance of regulating the composition of training data in ML-guided directed evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hsa_ID完成签到,获得积分10
1秒前
安静的缘分完成签到,获得积分10
2秒前
坚强哑铃完成签到,获得积分10
2秒前
无头骑士发布了新的文献求助10
2秒前
3秒前
江南逢李龟年完成签到,获得积分10
3秒前
lh345769764完成签到,获得积分10
3秒前
mk_smile发布了新的文献求助10
4秒前
nanoyy完成签到,获得积分10
4秒前
浮游应助andy采纳,获得10
4秒前
usora发布了新的文献求助10
4秒前
科研通AI5应助DQ采纳,获得10
4秒前
heihei完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助50
4秒前
霊神之殇完成签到,获得积分10
5秒前
HH完成签到,获得积分10
5秒前
ha完成签到,获得积分10
5秒前
小果果完成签到,获得积分10
5秒前
5秒前
6秒前
大方的云朵完成签到,获得积分10
6秒前
7秒前
斯文香彤完成签到,获得积分10
7秒前
欣慰小蕊完成签到,获得积分10
8秒前
8秒前
九千岁完成签到,获得积分10
8秒前
香蕉觅云应助zhuzhu采纳,获得10
8秒前
8秒前
mk_smile完成签到,获得积分10
9秒前
9秒前
NexusExplorer应助潇洒的冰烟采纳,获得10
10秒前
11秒前
11秒前
hz完成签到,获得积分10
11秒前
无头骑士完成签到,获得积分10
11秒前
lzk完成签到,获得积分10
11秒前
哈哈丫丫完成签到,获得积分10
12秒前
12秒前
12秒前
李健的小迷弟应助小马采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068898
求助须知:如何正确求助?哪些是违规求助? 4290461
关于积分的说明 13367590
捐赠科研通 4110300
什么是DOI,文献DOI怎么找? 2250926
邀请新用户注册赠送积分活动 1256106
关于科研通互助平台的介绍 1188606