Learning Dynamic and Hierarchical Traffic Spatiotemporal Features With Transformer

计算机科学 流量(计算机网络) 人工智能 数据挖掘 变压器 工程类 计算机网络 电气工程 电压
作者
Haoyang Yan,Xiaolei Ma,Ziyuan Pu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22386-22399 被引量:233
标识
DOI:10.1109/tits.2021.3102983
摘要

Traffic forecasting has attracted considerable attention due to its importance in proactive urban traffic control and management. Scholars and engineers have exerted considerable efforts in improving the performance of traffic forecasting algorithms in terms of accuracy, reliability, and efficiency. Spatial feature representation of traffic flow is a core component that greatly influences traffic forecasting performance. In previous studies, several spatial attributes of traffic flow are ignored due to the following issues: a) traffic flow propagation does not comply with the road network, b) the spatial pattern of traffic flow varies over time, and c) single adjacent matrix cannot handle the complex and hierarchical urban traffic flow. To address the abovementioned issues, this study proposes a novel traffic forecasting algorithm called traffic transformer, which achieves great success in natural language processing. The multihead attention mechanism and stacking layers enable the transformer to learn dynamic and hierarchical features in sequential data. Two components, namely, global encoder and global–local decoder, are proposed to extract and fuse the spatial patterns globally and locally. Experimental results indicate that the proposed traffic transformer outperforms state-of-the-art methods. The learned dynamic and hierarchical features of traffic flow can help achieve a better understanding of spatial dependency of traffic flow for effective and efficient traffic control and management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
ww发布了新的文献求助10
3秒前
曹操的曹发布了新的文献求助10
4秒前
4秒前
团子完成签到,获得积分10
4秒前
万能图书馆应助xkhxh采纳,获得10
5秒前
shhoing应助吴未采纳,获得10
5秒前
zmy发布了新的文献求助10
5秒前
5秒前
在水一方应助gzl采纳,获得10
6秒前
科研通AI6应助田佳媛采纳,获得10
6秒前
科研通AI6应助00采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
聪慧冬天发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
11秒前
素雅发布了新的文献求助10
11秒前
火锅发布了新的文献求助10
12秒前
碳烤土豆完成签到,获得积分20
13秒前
科研通AI6应助czy采纳,获得10
14秒前
啊阿阿阿沐完成签到,获得积分10
14秒前
Lu完成签到,获得积分20
15秒前
田様应助碳烤土豆采纳,获得10
18秒前
爆米花应助热情的板栗采纳,获得10
19秒前
所所应助无情的rr采纳,获得10
20秒前
22秒前
清儿完成签到,获得积分10
22秒前
22秒前
陈陈陈完成签到,获得积分10
22秒前
wzy完成签到,获得积分10
22秒前
科研通AI6应助繁荣的念双采纳,获得10
23秒前
23秒前
上个月涨了工资完成签到,获得积分20
24秒前
wzy发布了新的文献求助10
27秒前
白江虎发布了新的文献求助10
28秒前
saluo完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536778
求助须知:如何正确求助?哪些是违规求助? 4624429
关于积分的说明 14591955
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2502008
邀请新用户注册赠送积分活动 1480808
关于科研通互助平台的介绍 1451989