Topological Structure and Semantic Information Transfer Network for Cross-Scene Hyperspectral Image Classification

计算机科学 判别式 人工智能 模式识别(心理学) 高光谱成像 拓扑(电路) 稳健性(进化) 图形 领域(数学分析) 卷积神经网络 算法 数据挖掘 理论计算机科学 数学 数学分析 化学 组合数学 基因 生物化学
作者
Yuxiang Zhang,Wei Li,Mengmeng Zhang,Ying Qu,Ran Tao,Hairong Qi
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 2817-2830 被引量:188
标识
DOI:10.1109/tnnls.2021.3109872
摘要

Domain adaptation techniques have been widely applied to the problem of cross-scene hyperspectral image (HSI) classification. Most existing methods use convolutional neural networks (CNNs) to extract statistical features from data and often neglect the potential topological structure information between different land cover classes. CNN-based approaches generally only model the local spatial relationships of the samples, which largely limits their ability to capture the nonlocal topological relationship that would better represent the underlying data structure of HSI. In order to make up for the above shortcomings, a Topological structure and Semantic information Transfer network (TSTnet) is developed. The method employs the graph structure to characterize topological relationships and the graph convolutional network (GCN) that is good at processing for cross-scene HSI classification. In the proposed TSTnet, graph optimal transmission (GOT) is used to align topological relationships to assist distribution alignment between the source domain and the target domain based on the maximum mean difference (MMD). Furthermore, subgraphs from the source domain and the target domain are dynamically constructed based on CNN features to take advantage of the discriminative capacity of CNN models that, in turn, improve the robustness of classification. In addition, to better characterize the correlation between distribution alignment and topological relationship alignment, a consistency constraint is enforced to integrate the output of CNN and GCN. Experimental results on three cross-scene HSI datasets demonstrate that the proposed TSTnet performs significantly better than some state-of-the-art domain-adaptive approaches. The codes will be available from the website: https://github.com/YuxiangZhang-BIT/IEEE_TNNLS_TSTnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cold-Drink-Shop完成签到,获得积分10
1秒前
韩寒完成签到 ,获得积分10
2秒前
聪慧芷巧完成签到,获得积分10
3秒前
小晚完成签到,获得积分10
7秒前
健脊护柱完成签到 ,获得积分10
9秒前
沉静的友灵完成签到,获得积分10
24秒前
jia完成签到 ,获得积分10
24秒前
ly完成签到,获得积分10
28秒前
Herbs完成签到 ,获得积分10
29秒前
eternal_dreams完成签到 ,获得积分10
31秒前
小郭完成签到 ,获得积分10
36秒前
rafa完成签到 ,获得积分10
44秒前
李健应助科研通管家采纳,获得10
45秒前
不想洗碗完成签到 ,获得积分10
49秒前
墨墨完成签到 ,获得积分10
51秒前
俊逸的盛男完成签到 ,获得积分10
54秒前
1分钟前
白瑾完成签到 ,获得积分10
1分钟前
WuFen发布了新的文献求助10
1分钟前
澜生完成签到 ,获得积分10
1分钟前
聪慧的石头完成签到,获得积分10
1分钟前
manmanzhong完成签到 ,获得积分10
1分钟前
咕_完成签到 ,获得积分10
1分钟前
瓦尔基里发布了新的文献求助10
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
zeannezg完成签到 ,获得积分10
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
Gino完成签到,获得积分0
1分钟前
1分钟前
研友_LpvQlZ完成签到,获得积分10
1分钟前
虚幻元风完成签到 ,获得积分10
1分钟前
如意竺完成签到,获得积分10
1分钟前
追寻的续完成签到 ,获得积分10
1分钟前
AiHaraNeko完成签到,获得积分10
2分钟前
baoxiaozhai完成签到 ,获得积分10
2分钟前
虞无声完成签到,获得积分10
2分钟前
天将明完成签到 ,获得积分10
2分钟前
小糊涂仙儿完成签到 ,获得积分10
2分钟前
林撞树完成签到,获得积分10
2分钟前
shezhinicheng完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946199
求助须知:如何正确求助?哪些是违规求助? 3491114
关于积分的说明 11058968
捐赠科研通 3222060
什么是DOI,文献DOI怎么找? 1780802
邀请新用户注册赠送积分活动 865846
科研通“疑难数据库(出版商)”最低求助积分说明 800083