Non-Targeted Analysis Using Gas Chromatography-Mass Spectrometry for Evaluation of Chemical Composition of E-Vapor Products

质谱法 气相色谱-质谱法 化学 气相色谱法 重复性 色谱法 工艺工程 工作流程 二手烟 气溶胶 侧流烟 计算机科学 数据库 烟雾 有机化学 工程类
作者
Niti H. Shah,Michael R. Noe,Kimberly A. Agnew-Heard,Yezdi B. Pithawalla,William Gardner,Saibal Chakraborty,Nicholas McCutcheon,Hannah Grisevich,Thomas J. Hurst,Michael J. Morton,Matt S. Melvin,John H. Miller
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:9: 742854-742854 被引量:15
标识
DOI:10.3389/fchem.2021.742854
摘要

The Premarket Tobacco Product Applications (PMTA) guidance issued by the Food and Drug Administration for electronic nicotine delivery systems (ENDSs) recommends that in addition to reporting harmful and potentially harmful constituents (HPHCs), manufacturers should evaluate these products for other chemicals that could form during use and over time. Although e-vapor product aerosols are considerably less complex than mainstream smoke from cigarettes and heated tobacco product (HTP) aerosols, there are challenges with performing a comprehensive chemical characterization. Some of these challenges include the complexity of the e-liquid chemical compositions, the variety of flavors used, and the aerosol collection efficiency of volatile and semi-volatile compounds generated from aerosols. In this study, a non-targeted analysis method was developed using gas chromatography-mass spectrometry (GC-MS) that allows evaluation of volatile and semi-volatile compounds in e-liquids and aerosols of e-vapor products. The method employed an automated data analysis workflow using Agilent MassHunter Unknowns Analysis software for mass spectral deconvolution, peak detection, and library searching and reporting. The automated process ensured data integrity and consistency of compound identification with >99% of known compounds being identified using an in-house custom mass spectral library. The custom library was created to aid in compound identifications and includes over 1,100 unique mass spectral entries, of which 600 have been confirmed from reference standard comparisons. The method validation included accuracy, precision, repeatability, limit of detection (LOD), and selectivity. The validation also demonstrated that this semi-quantitative method provides estimated concentrations with an accuracy ranging between 0.5- and 2.0-fold as compared to the actual values. The LOD threshold of 0.7 ppm was established based on instrument sensitivity and accuracy of the compounds identified. To demonstrate the application of this method, we share results from the comprehensive chemical profile of e-liquids and aerosols collected from a marketed e-vapor product. Applying the data processing workflow developed here, 46 compounds were detected in the e-liquid formulation and 55 compounds in the aerosol sample. More than 50% of compounds reported have been confirmed with reference standards. The profiling approach described in this publication is applicable to evaluating volatile and semi-volatile compounds in e-vapor products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
平城落叶完成签到,获得积分10
2秒前
3秒前
尹幼蓉发布了新的文献求助10
3秒前
4秒前
4秒前
半柚发布了新的文献求助10
6秒前
7秒前
张WT发布了新的文献求助10
7秒前
辣椒小皇纸完成签到 ,获得积分10
7秒前
8秒前
9秒前
10秒前
hp发布了新的文献求助10
11秒前
12秒前
森森发布了新的文献求助10
13秒前
13秒前
14秒前
Xx完成签到 ,获得积分10
14秒前
hz完成签到,获得积分10
14秒前
hongw_liu完成签到,获得积分10
15秒前
16秒前
Evan发布了新的文献求助10
16秒前
yjdjskd123完成签到 ,获得积分10
17秒前
19秒前
只只发布了新的文献求助10
19秒前
无名应助十六日呀采纳,获得10
19秒前
20秒前
时间纬度完成签到,获得积分10
20秒前
古月完成签到 ,获得积分20
21秒前
科目三应助刻苦藏今采纳,获得200
21秒前
Lucas应助复杂的访波采纳,获得10
21秒前
24秒前
窦鞅发布了新的文献求助10
24秒前
自由的柠檬完成签到 ,获得积分10
24秒前
25秒前
蟹蟹发布了新的文献求助10
25秒前
26秒前
无奈的醉薇完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638333
求助须知:如何正确求助?哪些是违规求助? 4745373
关于积分的说明 15002092
捐赠科研通 4796488
什么是DOI,文献DOI怎么找? 2562649
邀请新用户注册赠送积分活动 1521998
关于科研通互助平台的介绍 1481834