Vectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization

点云 计算机科学 激光雷达 分割 平面布置图 3D城市模型 三维重建 马尔可夫随机场 计算机视觉 稳健性(进化) 人工智能 算法 图像分割 遥感 可视化 地质学 生物化学 化学 基因 嵌入式系统
作者
Jiali Han,Mengqi Rong,Hanqing Jiang,Hongmin Liu,Shuhan Shen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:177: 57-74 被引量:39
标识
DOI:10.1016/j.isprsjprs.2021.04.019
摘要

Vectorized reconstruction from indoor point cloud has attracted increasing attention in recent years due to its high regularity and low memory consumption. Compared with aerial mapping of outdoor urban environments, indoor point cloud generated by LiDAR scanning or image-based 3D reconstruction usually contain more clutter and missing areas, which greatly increase the difficulty of vectorized reconstruction. In this paper, we propose an effective multistep pipeline to reconstruct vectorized models from indoor point cloud without the Manhattan or Atlanta world assumptions. The core idea behind our method is the combination of a sequence of 2D segment or cell assembly problems that are defined as global optimizations while reducing the reconstruction complexity and enhancing the robustness to different scenes. The proposed method includes a semantic segmentation stage and a reconstruction stage. First, we segment the permanent structures of indoor scenes, including ceilings, floors, walls and cylinders, from the input data, and then, we reconstruct these structures in sequence. The floorplan is first generated by detecting wall planes and selecting optimal subsets of projected wall segments with Integer Linear Programming (ILP), followed by constructing a 2D arrangement and recovering the ceiling and floor structures by Markov Random Filed (MRF) labeling on the arrangement. Finally, the wall structures are modeled by lifting each edge of the arrangement to a proper height by means of another global optimization. Merging the respective results yields the final model. The experimental results show that the proposed method could obtain accurate and compact vectorized models on both precise LiDAR data and defect-laden MVS data compared with other state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chen发布了新的文献求助10
2秒前
JayWu完成签到,获得积分10
2秒前
pinecone完成签到,获得积分10
3秒前
Ahan发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
8R60d8应助kingwill采纳,获得10
5秒前
cfplhys发布了新的文献求助10
5秒前
汉堡包应助牛爷爷采纳,获得10
5秒前
Vicky完成签到 ,获得积分10
6秒前
充电宝应助石狗西采纳,获得10
6秒前
6秒前
弃梦完成签到,获得积分10
6秒前
恰饭完成签到,获得积分10
6秒前
6秒前
7秒前
耳朵追追完成签到,获得积分10
8秒前
8秒前
8秒前
orixero应助luym采纳,获得10
8秒前
火星上平灵关注了科研通微信公众号
11秒前
恰饭发布了新的文献求助10
11秒前
12秒前
小青椒应助Layman采纳,获得30
12秒前
12秒前
SciGPT应助影默采纳,获得10
13秒前
xaq发布了新的文献求助10
13秒前
14秒前
跳跃早晨完成签到,获得积分10
14秒前
14秒前
overLORD2333发布了新的文献求助10
14秒前
1b完成签到,获得积分10
14秒前
zz发布了新的文献求助30
15秒前
Owen应助小冉采纳,获得10
15秒前
好好发布了新的文献求助10
15秒前
luym发布了新的文献求助10
17秒前
开放诗完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4679574
求助须知:如何正确求助?哪些是违规求助? 4056044
关于积分的说明 12541780
捐赠科研通 3750490
什么是DOI,文献DOI怎么找? 2071462
邀请新用户注册赠送积分活动 1100516
科研通“疑难数据库(出版商)”最低求助积分说明 980022