Scaled biomass estimation in woodland ecosystems: Testing the individual and combined capacities of satellite multispectral and lidar data

遥感 激光雷达 多光谱图像 环境科学 卫星 林地 比例(比率) 植被(病理学) 高光谱成像 图像分辨率 计算机科学 地理 地图学 生态学 病理 工程类 生物 航空航天工程 人工智能 医学
作者
Michael J. Campbell,Philip E. Dennison,Kelly L. Kerr,Simon Brewer,William R. L. Anderegg
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:262: 112511-112511 被引量:42
标识
DOI:10.1016/j.rse.2021.112511
摘要

Airborne laser scanning (ALS) data enable accurate modeling and mapping of aboveground biomass (AGB), but the limited spatial and temporal extents of ALS data collection limit the capacity for broad-scale carbon accounting. Conversely, while space-based remote sensing instruments provide increased spatial and temporal coverage, it can be difficult to directly link field-level vegetation biometrics to satellite data due to coarser spatial resolution and positional uncertainty. The combined use of ALS and satellite remote sensing data may offer a solution to efficient, accurate, and consistent AGB mapping across time and space. Such airborne-spaceborne data fusion has been demonstrated successfully in high-biomass settings; however, the unique structural conditions of dryland woodland ecosystems, with open canopies and low leaf area indices, pose mapping challenges that require further study. These challenges are particularly acute with large footprint spaceborne lidar, where short, widely-spaced trees may limit the capacity for accurate AGB estimation. In this study, we present a scaled methodological framework for linking field-measured woodland AGB to ALS data and, in turn, linking ALS-modeled AGB to satellite data, using piñon-juniper woodlands in southeastern Utah as a case study. We compare the effectiveness of this scaling approach using two satellite sensors, Landsat 8 OLI (multispectral) and GEDI (lidar). Since the predicted outputs of our local-scale model are being used as inputs to our regional-scale model, we also demonstrate an approach for propagating uncertainty throughout this nested, multiscale analytical framework, leveraging the inherent variability within a random forest's decision trees. Given the positional uncertainty of GEDI footprints, we test a range of different footprint sizes for their relative effects on ALS-GEDI AGB model accuracy. Our local-scale (field-ALS) predictive model was able to account for 74% of variance in AGB, and estimate AGB with a root mean squared error (RMSE) of 14 Mg/ha, a mean absolute error (MAE) of 11.09 Mg/ha. Our regional-scale (ALS-Landsat/GEDI) analysis with propagated uncertainty revealed that the combined use of Landsat and GEDI metrics produced the best predictive model (R2 = 0.68; RMSE = 12.71 Mg/ha; MAE = 9.40 Mg/ha), followed by Landsat-only metrics (R2 = 0.66, RMSE = 13.08 Mg/ha; MAE = 9.71 Mg/ha), and GEDI-only metrics (R2 = 0.49, RMSE = 16.01 Mg/ha; MAE = 12.14 Mg/ha). These results suggest that Landsat may be better-suited than GEDI for estimating AGB in woodland environments where low canopy covers and short trees limit the capacity for precisely characterizing vegetation structure within large-footprint, waveform lidar data. The footprint size analysis revealed that larger simulated footprints (e.g., 30 m radius and greater) produced higher GEDI model accuracies; however, increasing footprint radii beyond 30 m does not significantly increase model accuracy. This research represents an important step forward in improving our capacity for reliably mapping woodland AGB, and provides an early test case for the application of GEDI data to woodland AGB mapping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观冰颜发布了新的文献求助10
刚刚
瓦尔迪完成签到,获得积分10
1秒前
3秒前
非而者厚应助kiwi采纳,获得10
4秒前
5秒前
华仔应助小郭采纳,获得10
6秒前
lyn_zhou完成签到,获得积分10
7秒前
8秒前
苗条盼山完成签到,获得积分10
9秒前
sci发布了新的文献求助10
9秒前
李健应助和谐幼丝采纳,获得30
10秒前
乐观冰颜完成签到,获得积分10
10秒前
YDSG完成签到,获得积分10
11秒前
科研通AI5应助hyominhsu采纳,获得10
11秒前
岚一发布了新的文献求助10
12秒前
qerovo发布了新的文献求助10
12秒前
笑点低大白菜真实的钥匙完成签到,获得积分10
14秒前
1111发布了新的文献求助10
14秒前
踏实无敌应助66647采纳,获得10
16秒前
19秒前
20秒前
21秒前
22秒前
1111完成签到,获得积分10
24秒前
25秒前
小郭发布了新的文献求助10
25秒前
搜集达人应助Yu采纳,获得30
26秒前
钟爱发布了新的文献求助10
27秒前
研友_LOK59L发布了新的文献求助10
27秒前
XXDNC完成签到,获得积分10
27秒前
28秒前
SHJ完成签到,获得积分10
28秒前
joey完成签到,获得积分10
31秒前
甜崽发布了新的文献求助10
31秒前
31秒前
34秒前
自由的水绿完成签到 ,获得积分10
34秒前
eawea完成签到,获得积分10
34秒前
hyominhsu发布了新的文献求助10
35秒前
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Oxford Picture Dictionary 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353628
关于积分的说明 10366242
捐赠科研通 3069900
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320