Transistor Self-Heating: The Rising Challenge for Semiconductor Testing

晶体管 材料科学 可靠性(半导体) 光电子学 电气工程 电子工程 功率(物理) 工程类 物理 电压 量子力学
作者
Om Prakash,Chetan Kumar Dabhi,Yogesh Singh Chauhan,Hussam Amrouch
标识
DOI:10.1109/vts50974.2021.9441002
摘要

Quantum confinement in 3-D device structure together with the newly employed materials like silicon-germanium (SiGe) in advanced technologies (e.g., FinFET, nanowire, nanosheets, etc.) makes transistors seriously suffer from localized self-heating effects in which generated heat within the transistor's channel is trapped inside. This is mainly due to the much lower channel and surrounding material thermal conductivity and hence lower ability for heat dissipation along with the firm isolation needed for better gate control. Self-heating effects strongly accelerate transistor aging and all the underlying defect generation mechanisms leading to serious reliability problems during the early life of chips. The key challenge in transistor self-heating when it comes to semiconductor testing is the profound difficulty in measuring self-heating directly as generated heat is trapped inside the transistor. Failing in capturing self-heating phenomenon during IC testing would later lead to chips malfunctions at run-time and hence early life failures because of reliability degradations and failure mechanisms will be unexpectedly accelerated akin to excessive internal temperatures. In this paper, we investigate the impact of self-heating effects on n-type and p-type FinFET transistors calibrated with Intel 14 nm measurement data using mature Technology CAD (TCAD) simulations. Then, the industry standard compact model for FinFET technologies (BSIM-CMG) is carefully calibrated to accurately model and reproduce all measurements. This enables circuit's designers, for the first time, to accurately investigate how emerging self-heating effects in transistors impacts the performance and power of large circuits. This opens new doors for developing novel Design-for-Testing methods that effectively reveal self-heating effects and increase the yield of chips.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助无情听南采纳,获得10
刚刚
2秒前
3秒前
3秒前
孙燕应助兜里只有三块钱采纳,获得10
3秒前
BoBo完成签到 ,获得积分10
4秒前
4秒前
开心若云发布了新的文献求助10
6秒前
6秒前
Dita发布了新的文献求助10
7秒前
Wk发布了新的文献求助10
7秒前
田様应助hyw010724采纳,获得10
7秒前
星辰大海应助杨冰采纳,获得10
8秒前
友好靖巧完成签到,获得积分10
8秒前
miaoww完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
微笑向卉发布了新的文献求助10
9秒前
一个虾条完成签到,获得积分10
11秒前
鬲木发布了新的文献求助10
12秒前
NOBODY完成签到,获得积分10
14秒前
丘比特应助不爱吃姜采纳,获得10
14秒前
xinlong完成签到,获得积分10
15秒前
我不是很帅完成签到,获得积分10
15秒前
shabbow完成签到,获得积分10
15秒前
summertny完成签到,获得积分10
17秒前
19秒前
xtb关注了科研通微信公众号
20秒前
20秒前
20秒前
安详念蕾发布了新的文献求助20
21秒前
上官若男应助summertny采纳,获得10
21秒前
Dita完成签到,获得积分10
24秒前
程程程发布了新的文献求助10
24秒前
24秒前
Frank完成签到,获得积分10
24秒前
iNk应助陈糯米采纳,获得20
24秒前
简易发布了新的文献求助10
24秒前
麻瓜晋升小巫师完成签到,获得积分10
25秒前
常鹏飞发布了新的文献求助10
26秒前
hyw010724发布了新的文献求助10
27秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866454
求助须知:如何正确求助?哪些是违规求助? 3408895
关于积分的说明 10660565
捐赠科研通 3133007
什么是DOI,文献DOI怎么找? 1727967
邀请新用户注册赠送积分活动 832602
科研通“疑难数据库(出版商)”最低求助积分说明 780316