IH-GAN: A conditional generative model for implicit surface-based inverse design of cellular structures

数学 反向 算法 启发式 还原(数学) 模拟退火 缩放比例 计算机科学 几何学 拓扑(电路) 数学优化 组合数学
作者
Jun Wang,W. Wayne Chen,Daicong Da,Mark Fuge,Rahul Rai
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:396: 115060-115060 被引量:26
标识
DOI:10.1016/j.cma.2022.115060
摘要

Variable-density cellular structures can overcome connectivity and manufacturability issues of topologically optimized structures, particularly those represented as discrete density maps. However, the optimization of such cellular structures is challenging due to the multiscale design problem. Past work addressing this problem generally either only optimizes the volume fraction of single-type unit cells but ignores the effects of unit cell geometry on properties, or considers the geometry-property relation but builds this relation via heuristics. In contrast, we propose a simple yet more principled way to accurately model the property to geometry mapping using a conditional deep generative model, named Inverse Homogenization Generative Adversarial Network (IH-GAN). It learns the conditional distribution of unit cell geometries given properties and can realize the one-to-many mapping from properties to geometries. We further reduce the complexity of IH-GAN by using the implicit function parameterization to represent unit cell geometries. Results show that our method can 1) generate various unit cells that satisfy given material properties with high accuracy ($R^2$-scores between target properties and properties of generated unit cells $>98\%$) and 2) improve the optimized structural performance over the conventional variable-density single-type structure. In the minimum compliance example, our IH-GAN generated structure achieves a $79.7\%$ reduction in concentrated stress and an extra $3.03\%$ reduction in displacement. In the target deformation examples, our IH-GAN generated structure reduces the target matching error by $86.4\%$ and $79.6\%$ for two test cases, respectively. We also demonstrated that the connectivity issue for multi-type unit cells can be solved by transition layer blending.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guan完成签到 ,获得积分10
刚刚
木目完成签到,获得积分10
3秒前
胖宏完成签到 ,获得积分10
3秒前
bc应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
rengongzi完成签到 ,获得积分10
4秒前
moroa完成签到,获得积分10
7秒前
你香完成签到,获得积分10
7秒前
甜菜完成签到,获得积分10
7秒前
科研通AI5应助喜悦香萱采纳,获得10
7秒前
魔幻安南完成签到 ,获得积分10
8秒前
FUNG完成签到 ,获得积分10
9秒前
科研通AI5应助笨笨忘幽采纳,获得10
9秒前
爱听歌契完成签到 ,获得积分10
9秒前
10秒前
Komorebi完成签到,获得积分10
11秒前
SCI完成签到 ,获得积分10
11秒前
段段砖完成签到 ,获得积分10
14秒前
daixan89完成签到 ,获得积分10
14秒前
15秒前
流浪完成签到,获得积分10
17秒前
19秒前
yakami完成签到,获得积分20
19秒前
lx发布了新的文献求助10
20秒前
毅力鸟完成签到,获得积分10
23秒前
研友_VZG7GZ应助立军采纳,获得10
23秒前
鲤角兽完成签到,获得积分10
23秒前
cdercder完成签到,获得积分0
24秒前
myl发布了新的文献求助10
24秒前
睡觉觉了完成签到,获得积分20
25秒前
大鹏完成签到,获得积分10
26秒前
桐桐应助guangshuang采纳,获得10
27秒前
Jason完成签到,获得积分10
28秒前
善学以致用应助woobinhua采纳,获得10
29秒前
研究新人完成签到,获得积分10
31秒前
大傻春完成签到 ,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734