The influence of tumour vasculature on fluid flow in solid tumours: a mathematical modelling study

间质液 流体力学 血流 流量(数学) 病理 血管生成 磁导率 血管通透性 化学 生物医学工程 机械 医学 癌症研究 物理 心脏病学 生物化学
作者
Alamer Moath,Yun Xiao
出处
期刊:Biophysics reports [Chinese Academy of Sciences]
卷期号:7 (1): 35-54 被引量:4
标识
DOI:10.52601/bpr.2021.200041
摘要

Tumour vasculature is known to be aberrant, tortuous and erratic which can have significant implications for fluid flow. Fluid dynamics in tumour tissue plays an important part in tumour growth, metastasis and the delivery of therapeutics. Mathematical models are increasingly employed to elucidate the complex interplay between various aspects of the tumour vasculature and fluid flow. Previous models usually assume a uniformly distributed vasculature without explicitly describing its architecture or incorporate the distribution of vasculature without accounting for real geometric features of the network. In this study, an integrated computational model is developed by resolving fluid flow at the single capillary level across the whole tumour vascular network. It consists of an angiogenesis model and a fluid flow model which resolves flow as a function of the explicit vasculature by coupling intravascular flow and interstitial flow in tumour tissue. The integrated model has been used to examine the influence of microvascular distribution, necrosis and vessel pruning on fluid flow, as well as the effect of heterogeneous vessel permeability. Our results reveal the level of nonuniformity in tumour interstitial fluid pressure (IFP), with large variations in IFP profile between necrotic and non-necrotic tumours. Changes in microscopic features of the vascular network can significantly influence fluid flow in the tumour where removal of vessel blind ends has been found to reduce IFP and promote interstitial fluid flow. Our results demonstrate the importance of incorporating microscopic properties of the tumour vasculature and intravascular flow when predicting fluid flow in tumour tissue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥利安费发布了新的文献求助10
刚刚
wqy完成签到,获得积分10
刚刚
完美世界应助唐皮皮采纳,获得30
刚刚
1秒前
1秒前
我是老大应助疯子零零采纳,获得10
1秒前
如梦如画完成签到 ,获得积分10
2秒前
英俊的铭应助哈哈哈采纳,获得10
2秒前
明亮的智宸完成签到,获得积分10
2秒前
123321完成签到 ,获得积分10
2秒前
迫切完成签到,获得积分10
2秒前
潇洒的诗桃应助冷静凌旋采纳,获得10
3秒前
LIZHI完成签到 ,获得积分20
4秒前
4秒前
闻巷雨完成签到 ,获得积分10
4秒前
茉籽发布了新的文献求助10
5秒前
wz完成签到 ,获得积分10
6秒前
6秒前
地平发布了新的文献求助10
6秒前
6秒前
zyf发布了新的文献求助10
7秒前
生产队的建设者完成签到,获得积分20
7秒前
7秒前
羊_应助珂学家采纳,获得10
8秒前
nater2ver完成签到,获得积分10
8秒前
小涵完成签到,获得积分10
8秒前
优雅含莲完成签到 ,获得积分10
9秒前
兮希嘻夕完成签到,获得积分10
9秒前
豆西豆完成签到,获得积分10
9秒前
Dxy-TOFA完成签到,获得积分10
9秒前
稳重的菠萝应助我的文献采纳,获得10
9秒前
个性的电源完成签到,获得积分10
10秒前
小新完成签到,获得积分10
10秒前
酷波er应助张成伦采纳,获得10
11秒前
高兴的彩虹完成签到,获得积分10
11秒前
RuiLi完成签到,获得积分10
12秒前
llig发布了新的文献求助10
12秒前
baronge发布了新的文献求助10
12秒前
顺利的若灵完成签到,获得积分10
12秒前
无限平凡完成签到,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837924
求助须知:如何正确求助?哪些是违规求助? 3380044
关于积分的说明 10512173
捐赠科研通 3099680
什么是DOI,文献DOI怎么找? 1707179
邀请新用户注册赠送积分活动 821498
科研通“疑难数据库(出版商)”最低求助积分说明 772667