高超音速
气动加热
空气动力学
航空航天工程
翼
攻角
高超音速飞行
机翼外形
航空学
环境科学
材料科学
工程类
机械
物理
传热
作者
Zhao Yang,Jie Li,Lu Zhang,Xu Tian,Youxu Jiang
标识
DOI:10.1061/(asce)as.1943-5525.0001306
摘要
The coupled problem of aerodynamic heating and structural heat transfer occupies a very important position in the field of aerospace engineering applications because it directly affects the accurate prediction of aerothermal loads and structural deformation. This paper develops a fluid-thermal-structural coupling framework for the investigation of aerothermalelastic problems in hypersonic flow. A loosely coupled analysis strategy equipped with both the constant and adaptive coupling time step size approaches is adopted to integrate an in-house developed computational fluid dynamics (CFD) code using the finite element solver Abaqus and to perform coupling simulations based on CFD/computational thermal and structural dynamics (CTSD). The accuracy, reliability, and capability of the aerodynamic heating and fluid-thermal-structural coupling analysis methods in this framework have been validated by a spherically blunted cone and a cylindrical leading-edge model in a hypersonic environment. A typical low-aspect ratio hypersonic wing is adopted as the computational model to study in detail the impact of sustained aerothermodynamic loads on the aeroheating process, structural deformation characteristics, and aerodynamic performance. The results indicate that the aerodynamic heating effect obviously weakens the structure stiffness and, thereby, directly leads to a significant increment in wing structural deformation. Consequently, the pressure distribution and aerodynamic coefficients of the wing also change significantly after aerothermoelastic deformation. Therefore, the influence of aerodynamic heating on the aerothermoelastic behaviors of a hypersonic wing should be considered seriously in the design stage to avoid unaccepted structural deformation and aerodynamic loss in real flight. Moreover, the loosely coupled analysis strategy equipped with the adaptive coupling time step size approach can be used as a highly efficient simulation method for practical fluid-thermal-structural coupling problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI