Assessing the goodness of fit of forest models estimated by nonlinear mixed-model methods

拟合优度 统计 数学 人口 协方差 计量经济学 人口学 社会学
作者
Shan Huang,Shawn X. Meng,Yuqing Yang
出处
期刊:Canadian Journal of Forest Research [NRC Research Press]
卷期号:39 (12): 2418-2436 被引量:37
标识
DOI:10.1139/x09-140
摘要

In this study we examined various measures, including the concordance correlation (CC) coefficient, for determining the goodness of fit of forest models estimated by nonlinear mixed-model (NLMM) methods. Based on the volume–age data for black spruce, we analyzed the use of CC and other traditional goodness-of-fit measures such as coefficient of determination (R 2 ), mean bias, percent bias, root mean square error, and graphic techniques on both the population and subject-specific levels within the NLMM framework. We also examined the relationship between goodness-of-fit measures and the number of observations per subject. We found that the standard overall goodness-of-fit measures commonly reported on combined data from different subjects were generally insufficient in determining the goodness of fitted models. We recommend that CC and other selected goodness-of-fit measures be calculated for individual subjects, and that the frequency distributions of the calculated values be examined and used as the principal criteria for determining the goodness of fit of forest models estimated by NLMM methods and for comparing alternative models and covariance structures. We also emphasized the importance of using pertinent graphic techniques to assess the appropriateness of NLMMs, especially at the subject-specific level, wherein lies the main interest of NLMMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洛芷完成签到,获得积分10
2秒前
Akim应助刀刀采纳,获得10
2秒前
无限亦云完成签到,获得积分20
3秒前
5秒前
SYLH应助jiuyuan135采纳,获得10
6秒前
平常的毛豆应助草木采纳,获得10
8秒前
专注雨珍发布了新的文献求助30
8秒前
wanci应助leotao采纳,获得10
9秒前
摩天大楼完成签到,获得积分10
9秒前
lll完成签到,获得积分10
10秒前
11秒前
慕青应助杨冰采纳,获得10
11秒前
12秒前
13秒前
14秒前
Lynn完成签到 ,获得积分10
15秒前
无限亦云发布了新的文献求助10
16秒前
18秒前
18秒前
21秒前
CipherSage应助yoyofun采纳,获得10
21秒前
吴子冰发布了新的文献求助10
21秒前
yyauthor完成签到,获得积分10
22秒前
22秒前
leotao完成签到,获得积分10
23秒前
26秒前
26秒前
所所应助Kelly采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
眼睛大的胡萝卜完成签到 ,获得积分10
27秒前
nico完成签到,获得积分10
28秒前
28秒前
香蕉觅云应助扶苏采纳,获得10
29秒前
chessman完成签到,获得积分10
30秒前
科研通AI5应助K2采纳,获得10
30秒前
32秒前
yoyofun发布了新的文献求助10
32秒前
科研通AI5应助乐观帅哥采纳,获得10
32秒前
35秒前
吴子冰发布了新的文献求助10
35秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864597
求助须知:如何正确求助?哪些是违规求助? 3406974
关于积分的说明 10652142
捐赠科研通 3130961
什么是DOI,文献DOI怎么找? 1726702
邀请新用户注册赠送积分活动 831961
科研通“疑难数据库(出版商)”最低求助积分说明 780064