Secondary Structure Characterization Based on Amino Acid Composition and Availability in Proteins

蛋白质二级结构 氨基酸 蛋白质结构 氨基酸残基 蛋白质结构预测 作文(语言) 计算生物学 化学 肽序列 结晶学 生物 生物化学 语言学 基因 哲学
作者
Joji M. Otaki,Motosuke Tsutsumi,Tetsuo Gotoh,Hirokazu Yamamoto
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:50 (4): 690-700 被引量:35
标识
DOI:10.1021/ci900452z
摘要

The importance of thorough analyses of the secondary structures in proteins as basic structural units cannot be overemphasized. Although recent computational methods have achieved reasonably high accuracy for predicting secondary structures from amino acid sequences, a simple and fundamental empirical approach to characterize the amino acid composition of secondary structures was performed mainly in 1970s, with a small number of analyzed structures. To extend this classical approach using a large number of analyzed structures, here we characterized the amino acid sequences of secondary structures (12 154 α-helix units, 4592 310-helix units, 16 787 β-strand units, and 30 811 “other” units), using the representative three-dimensional protein structure records (1641 protein chains) from the Protein Data Bank. We first examined the length and the amino acid compositions of secondary structures, including rank order differences and assignment relationships among amino acids. These compositional results were largely, but not entirely, consistent with the previous studies. In addition, we examined the frequency of 400 amino acid doublets and 8000 triplets in secondary structures based on their relative counts, termed the availability. We identified not only some triplets that were specific to a certain secondary structure but also so-called zero-count triplets, which did not occur in a given secondary structure at all, even though they were probabilistically predicted to occur several times. Taken together, the present study revealed essential features of secondary structures and suggests potential applications in the secondary structure prediction and the functional design of protein sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫猫的好运气完成签到,获得积分10
刚刚
刚刚
4秒前
百里酚蓝发布了新的文献求助10
4秒前
风趣月饼完成签到,获得积分10
4秒前
心绿新绿发布了新的文献求助20
4秒前
loudly完成签到,获得积分10
6秒前
无花果应助YF采纳,获得10
6秒前
脑洞疼应助彭佳丽采纳,获得10
6秒前
Ava应助灵巧绿兰采纳,获得10
7秒前
科研通AI2S应助jimmyhui采纳,获得10
8秒前
付悦完成签到,获得积分10
9秒前
落羽完成签到,获得积分20
9秒前
热情曲奇发布了新的文献求助10
9秒前
向阳花完成签到,获得积分10
13秒前
15秒前
16秒前
淡定成风完成签到,获得积分10
17秒前
17秒前
17秒前
adcffgg发布了新的文献求助10
20秒前
清秀不言完成签到 ,获得积分10
21秒前
21秒前
hufgoiu发布了新的文献求助10
21秒前
21秒前
wjm关闭了wjm文献求助
21秒前
扶苏小雨发布了新的文献求助10
22秒前
结实智宸完成签到,获得积分10
22秒前
cn发布了新的文献求助10
22秒前
明昼发布了新的文献求助10
23秒前
避橙发布了新的文献求助10
24秒前
24秒前
25秒前
热情的寄瑶完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
29秒前
MIN发布了新的文献求助10
29秒前
ewmmel发布了新的文献求助10
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Strutts and the Arkwrights, 1758-1830 200
请注意只有同济大学本校可以下载,求助同济大学博士学位论文,作者:王腾锐,导师:罗巍, 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836850
求助须知:如何正确求助?哪些是违规求助? 3379071
关于积分的说明 10507545
捐赠科研通 3098997
什么是DOI,文献DOI怎么找? 1706635
邀请新用户注册赠送积分活动 821146
科研通“疑难数据库(出版商)”最低求助积分说明 772445