清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection

卷积神经网络 深度学习 计算机科学 人工智能 人工神经网络 机器学习 模式识别(心理学) 感知器
作者
Deegan Atha,Mohammad R. Jahanshahi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:17 (5): 1110-1128 被引量:322
标识
DOI:10.1177/1475921717737051
摘要

Corrosion is a major defect in structural systems that has a significant economic impact and can pose safety risks if left untended. Currently, an inspector visually assesses the condition of a structure to identify corrosion. This approach is time-consuming, tedious, and subjective. Robotic systems, such as unmanned aerial vehicles, paired with computer vision algorithms have the potential to perform autonomous damage detection that can significantly decrease inspection time and lead to more frequent and objective inspections. This study evaluates the use of convolutional neural networks for corrosion detection. A convolutional neural network learns the appropriate classification features that in traditional algorithms were hand-engineered. Eliminating the need for dependence on prior knowledge and human effort in designing features is a major advantage of convolutional neural networks. This article presents different convolutional neural network–based approaches for corrosion assessment on metallic surfaces. The effect of different color spaces, sliding window sizes, and convolutional neural network architectures are discussed. To this end, the performance of two pretrained state-of-the-art convolutional neural network architectures as well as two proposed convolutional neural network architectures are evaluated, and it is shown that convolutional neural networks outperform state-of-the-art vision-based corrosion detection approaches that are developed based on texture and color analysis using a simple multilayered perceptron network. Furthermore, it is shown that one of the proposed convolutional neural networks significantly improves the computational time in contrast with state-of-the-art pretrained convolutional neural networks while maintaining comparable performance for corrosion detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潜行者完成签到 ,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
26秒前
bingo完成签到,获得积分10
1分钟前
重庆森林完成签到,获得积分10
1分钟前
Ada完成签到 ,获得积分10
1分钟前
笨笨的怜雪完成签到 ,获得积分10
2分钟前
CodeCraft应助水雾采纳,获得10
2分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
平常以云完成签到 ,获得积分10
2分钟前
鲤鱼山人完成签到 ,获得积分10
2分钟前
2分钟前
水雾发布了新的文献求助10
2分钟前
tt完成签到,获得积分10
3分钟前
Fairy完成签到,获得积分10
3分钟前
鹏程万里完成签到,获得积分10
4分钟前
暗号完成签到 ,获得积分0
4分钟前
LJJ完成签到,获得积分10
4分钟前
慕青应助研友_8RyzBZ采纳,获得10
5分钟前
ljl86400完成签到,获得积分10
5分钟前
5分钟前
研友_8RyzBZ发布了新的文献求助10
5分钟前
科研通AI6应助阳光的星月采纳,获得10
6分钟前
大个应助研友_8RyzBZ采纳,获得10
6分钟前
7分钟前
研友_8RyzBZ发布了新的文献求助10
7分钟前
123应助研友_8RyzBZ采纳,获得10
7分钟前
赘婿应助阳光的星月采纳,获得10
7分钟前
外向的妍完成签到,获得积分10
7分钟前
8分钟前
娟子完成签到,获得积分10
8分钟前
8分钟前
lsl应助Atopos采纳,获得30
9分钟前
Criminology34应助Atopos采纳,获得10
9分钟前
10分钟前
10分钟前
10分钟前
嘟嘟完成签到 ,获得积分10
10分钟前
Aray完成签到 ,获得积分10
11分钟前
taster完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635162
求助须知:如何正确求助?哪些是违规求助? 4735022
关于积分的说明 14989826
捐赠科研通 4792862
什么是DOI,文献DOI怎么找? 2559967
邀请新用户注册赠送积分活动 1520215
关于科研通互助平台的介绍 1480311