Multi-energy CT decomposition using convolutional neural networks

卷积神经网络 人工智能 迭代重建 奇异值分解 能量(信号处理) 计算机科学 探测器 噪音(视频) 灵敏度(控制系统) 衰减 修补 材料科学 矩阵分解 模式识别(心理学) 计算机视觉 物理 光学 图像(数学) 工程类 电子工程 特征向量 量子力学
作者
Cristian T. Badea,Matt Holbrook,Darin P. Clark
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 卷期号:: 59-59 被引量:42
标识
DOI:10.1117/12.2293728
摘要

Spectral CT can provide accurate tissue composition measurements by utilizing the energy dependence of x-ray attenuation in different materials. We have introduced image reconstruction and material decomposition algorithms for multi-energy CT data acquired either with energy integrating detectors (EID) or photon counting detectors (PCD); however, material decomposition is an ill-posed problem due to the potential overlap of spectral measurements and to noise. Recently, convolutional neural networks (CNN) have generated excitement in the field of machine learning and computer vision. The goal of this work is to develop CNN-based methods for material decomposition in spectral CT. The CNN for decomposition had a U-net structure and was trained with either five-energy PCD-CT or DE-CT. As targets for training, we used simulated phantoms constructed from random combinations of water and contrast agents (iodine, barium, and calcium for five-energy PCD-CT; iodine and gold for DE EID-based CT). The experimentally measured sensitivity matrix values for iodine, barium, and calcium or iodine and gold were used to recreate the CT images corresponding to both PCD and DE-CT cases. These CT images were used to train CNNs to generate material maps at each pixel location. After training, we tested the CNNs by applying them to experimentally acquired DE-EID and PCD-based micro-CT data in mice. The predicted material maps were compared to the absolute truth in simulations and to sensitivity-based decompositions for the in vivo mouse data. The CNN-based decomposition provided higher accuracy and lower noise. In conclusion, our U-net performed a more robust spectral micro-CT decomposition because it inherently better exploits spatial and spectral correlations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
JamesPei应助踏实的丝采纳,获得10
1秒前
1秒前
1秒前
关畅澎发布了新的文献求助10
1秒前
华仔应助lzh1353730567采纳,获得10
1秒前
悠悠发布了新的文献求助30
2秒前
2秒前
李健应助HEIREN1采纳,获得10
2秒前
2秒前
楽龘完成签到,获得积分10
3秒前
zhonglv7应助花灯王子采纳,获得10
3秒前
3秒前
香蕉诗蕊给lzy的求助进行了留言
4秒前
机智飞荷完成签到,获得积分10
5秒前
暮色将至发布了新的文献求助10
5秒前
5秒前
lxw发布了新的文献求助10
5秒前
小二郎应助默默易梦采纳,获得10
5秒前
6秒前
lee完成签到,获得积分10
6秒前
六宫粉黛发布了新的文献求助10
6秒前
6秒前
Huang1xin发布了新的文献求助30
6秒前
研友_VZG7GZ应助123采纳,获得10
7秒前
CodeCraft应助lululu采纳,获得10
7秒前
7秒前
小咸鱼发布了新的文献求助10
8秒前
8秒前
8秒前
dog完成签到 ,获得积分10
8秒前
8秒前
8秒前
丘比特应助aganer采纳,获得10
8秒前
华仔应助章德仁采纳,获得10
9秒前
HEIREN1完成签到,获得积分10
9秒前
Phineas完成签到,获得积分20
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5701298
求助须知:如何正确求助?哪些是违规求助? 5143316
关于积分的说明 15233667
捐赠科研通 4856340
什么是DOI,文献DOI怎么找? 2605819
邀请新用户注册赠送积分活动 1557190
关于科研通互助平台的介绍 1515143