LiftingNet: A Novel Deep Learning Network With Layerwise Feature Learning From Noisy Mechanical Data for Fault Classification

计算机科学 人工智能 联营 深度学习 卷积神经网络 模式识别(心理学) 人工神经网络 深信不疑网络 特征提取 机器学习 断层(地质) 特征(语言学) 噪音(视频) 图像(数学) 地震学 哲学 地质学 语言学
作者
Jun Pan,Yanyang Zi,Jinglong Chen,Zitong Zhou,Biao Wang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (6): 4973-4982 被引量:270
标识
DOI:10.1109/tie.2017.2767540
摘要

The key challenge of intelligent fault diagnosis is to develop features that can distinguish different categories. Because of the unique properties of mechanical data, predetermined features based on prior knowledge are usually used as inputs for fault classification. However, proper selection of features often requires expertise knowledge and becomes more difficult and time consuming when volume of data increases. In this paper, a novel deep learning network (LiftingNet) is proposed to learn features adaptively from raw mechanical data without prior knowledge. Inspired by convolutional neural network and second generation wavelet transform, the LiftingNet is constructed to classify mechanical data even though inputs contain considerable noise and randomness. The LiftingNet consists of split layer, predict layer, update layer, pooling layer, and full-connection layer. Different kernel sizes are allowed in convolutional layers to improve learning ability. As a multilayer neural network, deep features are learned from shallow ones to represent complex structures in raw data. Feasibility and effectiveness of the LiftingNet is validated by two motor bearing datasets. Results show that the proposed method could achieve layerwise feature learning and successfully classify mechanical data even with different rotating speed and under the influence of random noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
任性雁露发布了新的文献求助10
1秒前
火焰鼠发布了新的文献求助10
1秒前
坦率的可仁完成签到,获得积分10
3秒前
3秒前
帅的人发布了新的文献求助10
3秒前
丁浩伦应助学习中采纳,获得10
3秒前
vizi应助開心采纳,获得30
4秒前
乐乐应助白一寒采纳,获得10
4秒前
5秒前
科研通AI5应助顺心的巨人采纳,获得10
5秒前
5秒前
6秒前
领导范儿应助小蚊子采纳,获得10
6秒前
7秒前
晴晴完成签到,获得积分10
7秒前
7秒前
甜橙汁完成签到,获得积分10
8秒前
9秒前
Li完成签到 ,获得积分20
9秒前
王璐瑶完成签到,获得积分10
9秒前
crillzlol发布了新的文献求助10
9秒前
9秒前
毕瑞欣完成签到,获得积分10
9秒前
kinmke完成签到,获得积分10
9秒前
9秒前
10秒前
三石发布了新的文献求助30
11秒前
小二郎应助疏影叶落采纳,获得10
11秒前
CipherSage应助土豪的访梦采纳,获得10
12秒前
打打应助同舟共济777采纳,获得10
12秒前
莫西莫西发布了新的文献求助10
12秒前
tttt发布了新的文献求助10
13秒前
青木聪聪完成签到,获得积分10
14秒前
03完成签到,获得积分10
14秒前
weiwei发布了新的文献求助10
14秒前
亿亿亿亿完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972