亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract WP269: Automatic Segmentation of Cerebral Arteries in MRA TOF Using Deep Learning

人工智能 深度学习 分割 基本事实 医学 卷积神经网络 计算机科学 人工神经网络 模式识别(心理学) 放射科
作者
Leonard L.L. Yeo,Melih Engin,Robin Lange,Sethu Raman Boopathy,Cunli Yang,David K Tang,Milad Mohammadzadeh,Sadaf Monajemi,Chin Kong Goh,Tian Ming Tu,Vijay K. Sharma
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:51 (Suppl_1) 被引量:1
标识
DOI:10.1161/str.51.suppl_1.wp269
摘要

Purpose: Time-of-Flight (TOF) MRA is commonly used for grading cerebrovascular diseases. Analysis of cerebral arteries in MRA TOF is a challenging and time consuming task that would benefit from automation. Established image processing methods for automatic segmentation of cerebral arteries suffer from common artefacts such as kissing vessels (when two nearby vessels touch) and signal intensity drop (especially in the presence of pathology). Artificial intelligence models are promising candidates for resolving such artefacts. Here, we propose and assess the performance of a deep learning model for automatic segmentation of cerebral arteries in MRA TOF which is robust to common MRI artefacts. Methods: A 3D convolutional neural network (CNN) is proposed for automatic segmentation of intracranial arteries in MRA TOF. The neural network is trained with a custom loss function and residual blocks to penalize the occurrence of common artefacts such as kissing vessels. The model is trained and tested on a dataset consisting of 82 subjects (50 healthy volunteers and 32 patients with intracranial stenosis) following a 3-fold cross-validation method, i.e. 3 models are trained where each model is blind to one-third of the data in the training process to avoid bias. Manual segmentation of the arteries done by an expert reader are used as ground-truth for training and testing the model. Results: The proposed deep learning model achieved excellent accuracy compared against the ground truth (Dice score 0.89). Our proposed deep learning model outperformed a state-of-the-art neural network for image segmentation (3DU-Net, Dice score 0.85) and resulted in considerably less occurences of artefacts such as kissing vessels (9% of cases had segmentation artefacts for our model vs 16% for 3D U-Net). The proposed deep learning model was fast, taking only 2 seconds to produce a 3D model of the arteries on a laptop with a dedicated GPU. Conclusion: The proposed deep learning model accurately segments intracranial arteries in MRA TOF and is robust to common artefacts of MR imaging thanks to implementation of a custom loss function. The model can potentially increase the accuracy and speed of grading cerebrovascular diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
qx完成签到,获得积分10
4秒前
5秒前
www完成签到 ,获得积分10
9秒前
wanci应助陈时懿采纳,获得10
9秒前
15秒前
科研狗完成签到 ,获得积分10
16秒前
20秒前
完美世界应助p13508397190采纳,获得30
25秒前
26秒前
跳跃野狼发布了新的文献求助10
26秒前
小宋爱睡觉完成签到 ,获得积分10
27秒前
liyx发布了新的文献求助10
30秒前
36秒前
36秒前
小二郎应助芬芬采纳,获得10
37秒前
阳光的玉米完成签到,获得积分10
38秒前
cnbhhhhh发布了新的文献求助10
41秒前
41秒前
43秒前
lzy发布了新的文献求助10
46秒前
49秒前
59秒前
隐形曼青应助四月天采纳,获得10
1分钟前
芬芬发布了新的文献求助10
1分钟前
1分钟前
cheezburger发布了新的文献求助10
1分钟前
1分钟前
可靠的老鼠完成签到,获得积分10
1分钟前
范振杰发布了新的文献求助10
1分钟前
cheezburger完成签到,获得积分10
1分钟前
恒温失效关注了科研通微信公众号
1分钟前
1分钟前
绝尘发布了新的文献求助20
1分钟前
英俊的铭应助cnbhhhhh采纳,获得10
1分钟前
四月天发布了新的文献求助10
1分钟前
斯寜应助绝尘采纳,获得10
1分钟前
科研通AI2S应助younger采纳,获得10
1分钟前
1分钟前
科研通AI2S应助范振杰采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702