亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of programmable gemcitabine-GnRH pro-drugs bearing linker controllable “click” oxime bond tethers and preclinical evaluation against prostate cancer

吉西他滨 化学 连接器 前列腺癌 LNCaP公司 癌症研究 癌细胞 肿瘤微环境 内化 点击化学 流式细胞术 癌症 药理学 生物化学 细胞 组合化学 免疫学 内科学 生物 医学 操作系统 计算机科学
作者
Eirinaios I. Vrettos,Theodoros Karampelas,Nisar Sayyad,Anastasia Kougioumtzi,Nelofer Syed,Timothy Crook,Carol Murphy,Constantin Tamvakopoulos,Andreas G. Tzakos
出处
期刊:European journal of medicinal chemistry [Elsevier BV]
卷期号:211: 113018-113018 被引量:28
标识
DOI:10.1016/j.ejmech.2020.113018
摘要

Peptide-drug conjugates (PDCs) are gaining considerable attention as anti-neoplastic agents. However, their development is often laborious and time-consuming. Herein, we have developed and preclinically evaluated three PDCs with gemcitabine as the anticancer cytotoxic unit and D-Lys 6 -GnRH (gonadotropin-releasing hormone; GnRH) as the cancer-targeting unit. These units were tethered via acid-labile programmable linkers to guide a differential drug release rate from the PDC through a combination of ester or amide and “click” type oxime ligations. The pro-drugs were designed to enable the selective targeting of malignant tumor cells with linker guided differential drug release rates. We exploited the oxime bond responsiveness against the acidic pH of the tumor microenvironment and the GnRH endocytosis via the GnRH-R GPCR which is overexpressed on cancer cells. The challenging metabolic properties of gemcitabine were addressed during design of the PDCs. We developed a rapid (1 hour) and cost-effective “click” oxime bond ligation platform to assemble in one-pot the 3 desired PDCs that does not require purification, surpassing traditional time-ineffective and low yield methods. The internalization of the tumor-homing peptide unit in cancer cells, overexpressing the GnRH-R, was first validated through confocal laser microscopy and flow cytometry analysis. Subsequently, the three PDCs were evaluated for their in vitro antiproliferative effect in prostate cancer cells. Their stability and the release of gemcitabine over time were monitored in vitro in cell culture and in human plasma using LC-MS/MS. We then assessed the ability of the developed PDCs to internalize in prostate cancer cells and to release gemcitabine. The most potent analog, designated GOXG 1 , was used for pharmacokinetic studies in mice. The metabolism of GOXG 1 was examined in liver microsomes, as well as in buffers mimicking the pH of intracellular organelles, resulting in the identification of two metabolites. The major metabolite at low pH emanated from the cleavage of the pH-labile oxime bond, validating our design approach. NMR spectroscopy and in vitro radioligand binding assays were exploited for GOXG 1 to validate that upon conjugating the drug to the peptide, the peptide microenvironment responsible for its GnRH-R binding is not perturbed and to confirm its high binding potency to the GnRH-R. Finally, the binding of GOXG 1 to the GnRH-R and the associated elicitation of testosterone release in mice were also determined. The facile platform established herein for the rapid assembly of PDCs with linker controllable characteristics from aldehyde and aminooxy units through rapid “click” oxime ligation, that does not require purification steps, could pave the way for a new generation of potent cancer therapeutics, diagnostics and theranostics. • 3 novel GnRH-R homing peptide-drug conjugates (PDCs) were developed. • A rapid and cost-effective method for one-pot “click” oxime ligation was established. • In vitro cytotoxicity and potency of the three PDCs was validated in two CaP cell lines. • In vitro stability was evaluated in DU145 cell culture and human plasma. • The in vivo pharmacokinetics and metabolic fate of the most potent analog were explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
7秒前
dp发布了新的文献求助10
11秒前
37秒前
54秒前
55秒前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
颜靖仇发布了新的文献求助10
1分钟前
颜靖仇完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
1分钟前
ET发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Ethan发布了新的文献求助10
2分钟前
Ethan完成签到,获得积分10
2分钟前
2分钟前
点心发布了新的文献求助10
3分钟前
3分钟前
fangyifang完成签到,获得积分10
3分钟前
3分钟前
3分钟前
百里发布了新的文献求助10
3分钟前
3分钟前
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
bushiCC完成签到 ,获得积分20
4分钟前
4分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4048170
求助须知:如何正确求助?哪些是违规求助? 3585979
关于积分的说明 11395350
捐赠科研通 3312840
什么是DOI,文献DOI怎么找? 1822702
邀请新用户注册赠送积分活动 894642
科研通“疑难数据库(出版商)”最低求助积分说明 816439