Data-driven learning of nonlocal physics from high-fidelity synthetic data

计算机科学 合成数据 算法 物理 统计物理学 忠诚 理论物理学 应用数学 数学 电信
作者
Huaiqian You,Yue Yu,Nathaniel Trask,Mamikon Gulian,Marta D’Elia
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:374: 113553-113553 被引量:60
标识
DOI:10.1016/j.cma.2020.113553
摘要

Abstract A key challenge to nonlocal models is the analytical complexity of deriving them from first principles, and frequently their use is justified a posteriori. In this work we extract nonlocal models from data, circumventing these challenges and providing data-driven justification for the resulting model form. Extracting data-driven surrogates is a major challenge for machine learning (ML) approaches, due to nonlinearities and lack of convexity — it is particularly challenging to extract surrogates which are provably well-posed and numerically stable. Our scheme not only yields a convex optimization problem, but also allows extraction of nonlocal models whose kernels may be partially negative while maintaining well-posedness even in small-data regimes. To achieve this, based on established nonlocal theory, we embed in our algorithm sufficient conditions on the non-positive part of the kernel that guarantee well-posedness of the learnt operator. These conditions are imposed as inequality constraints to meet the requisite conditions of the nonlocal theory. We demonstrate this workflow for a range of applications, including reproduction of manufactured nonlocal kernels; numerical homogenization of Darcy flow associated with a heterogeneous periodic microstructure; nonlocal approximation to high-order local transport phenomena; and approximation of globally supported fractional diffusion operators by truncated kernels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuuuuuma完成签到,获得积分10
1秒前
1秒前
小鱼发布了新的文献求助10
2秒前
zcz发布了新的文献求助20
2秒前
2秒前
2秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
fff应助科研通管家采纳,获得10
3秒前
3秒前
鸣笛应助科研通管家采纳,获得30
3秒前
韭菜仔完成签到,获得积分10
3秒前
鸣笛应助科研通管家采纳,获得30
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
fff应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
BYN发布了新的文献求助10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
小二郎应助无限的谷丝采纳,获得10
5秒前
李爱国应助小黄超人采纳,获得10
6秒前
搞怪慕晴发布了新的文献求助10
6秒前
Li发布了新的文献求助10
6秒前
8秒前
lemon发布了新的文献求助10
8秒前
327发布了新的文献求助10
9秒前
pariscxl完成签到,获得积分10
10秒前
11秒前
11秒前
香蕉觅云应助王小冉采纳,获得10
11秒前
JamesPei应助羞涩的高山采纳,获得10
11秒前
12秒前
诸乘风发布了新的文献求助10
12秒前
小酥饼发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Conceptual Metaphor Theory in World Language Education 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3926088
求助须知:如何正确求助?哪些是违规求助? 3470753
关于积分的说明 10964723
捐赠科研通 3200430
什么是DOI,文献DOI怎么找? 1768299
邀请新用户注册赠送积分活动 857431
科研通“疑难数据库(出版商)”最低求助积分说明 796016