已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic Beam Hopping Method Based on Multi-Objective Deep Reinforcement Learning for Next Generation Satellite Broadband Systems

计算机科学 强化学习 灵活性(工程) 频道(广播) 传输(电信) 通信卫星 吞吐量 数学优化 卫星 计算机网络 无线 电信 工程类 人工智能 航空航天工程 统计 数学
作者
Xin Hu,Yuchen Zhang,Xianglai Liao,Zhijun Liu,Weidong Wang,Fadhel M. Ghannouchi
出处
期刊:IEEE Transactions on Broadcasting [Institute of Electrical and Electronics Engineers]
卷期号:66 (3): 630-646 被引量:114
标识
DOI:10.1109/tbc.2019.2960940
摘要

When regarding the inherent uncertainty of differentiated services requirements as well as the non-uniform spatial distribution of capacity requests, it is essential to flexibility adjust resources of the satellite to satisfy the different conditions. How to match the system capacity demand with efficient utilization of beam is a brand-new challenge. The convention beam hopping methods ignores the intrinsic correlation between decisions, do not consider the long-term reward, and only achieve the optimal solution at the current time. Therefore, system complexity increases significantly as the increase of the demand for differentiated services or beam number. This paper investigates the optimal policy for beam hopping in DVB-S2X satellite with multiple purposes of assuring the fairness of each beam services, minimizing the delay of real-time services transmission, and maximizing the throughput of non-instant services transmission. Since wireless channel conditions, differentiated services arrival rates have stochastic properties, and the multi-beam satellite environment's dynamics are unknown, the model-free multi-objective deep reinforcement learning approach is used to learn the optimal policy through interactions with the situation. To solve the problem with action dimensional disaster, a novel multi-action selection method based on a Double-Loop Learning (DLL) is proposed. Moreover, the multi-dimensional state is reformulated and obtained by the deep neural network. Under realistic conditions achieving evaluation results demonstrate that the proposed method can pursue multiple objectives simultaneously, and it can also allocate resource intelligently adapting to the user requirements and channel conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
王安妮完成签到,获得积分10
6秒前
杨莹发布了新的文献求助10
6秒前
何晏完成签到 ,获得积分10
6秒前
包子完成签到,获得积分10
7秒前
keyantong001完成签到,获得积分10
7秒前
YNHN完成签到 ,获得积分10
7秒前
Jh关注了科研通微信公众号
8秒前
樱桃猴子完成签到,获得积分10
9秒前
bkagyin应助克林采纳,获得10
9秒前
科研通AI6应助sunny采纳,获得10
9秒前
缥缈的机器猫完成签到,获得积分10
10秒前
10秒前
Li发布了新的文献求助10
10秒前
小蘑菇应助红烧驱逐舰采纳,获得10
11秒前
大力尔云完成签到 ,获得积分10
12秒前
12秒前
aliu发布了新的文献求助10
13秒前
小鲟鱼发布了新的文献求助10
13秒前
16秒前
小蘑菇应助平常的夏菡采纳,获得10
16秒前
杜雨柔发布了新的文献求助10
17秒前
小马甲应助Li采纳,获得10
17秒前
旦皋完成签到 ,获得积分10
17秒前
18秒前
克林完成签到,获得积分20
18秒前
19秒前
克林发布了新的文献求助10
21秒前
lyp完成签到,获得积分10
22秒前
李爱国应助yangzhang采纳,获得10
22秒前
22秒前
LQ发布了新的文献求助30
23秒前
华仔应助杨莹采纳,获得10
23秒前
23秒前
25秒前
香蕉觅云应助小刘采纳,获得10
25秒前
摆烂的雨雨完成签到,获得积分10
26秒前
喵喵发布了新的文献求助10
27秒前
28秒前
El发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850864
求助须知:如何正确求助?哪些是违规求助? 4149880
关于积分的说明 12855861
捐赠科研通 3897534
什么是DOI,文献DOI怎么找? 2142184
邀请新用户注册赠送积分活动 1161848
关于科研通互助平台的介绍 1061745