控制理论(社会学)
起飞和着陆
姿态控制
稳健性(进化)
卡尔曼滤波器
扩展卡尔曼滤波器
四元数
计算机科学
工程类
飞行操纵面
控制工程
空气动力学
人工智能
航空航天工程
控制(管理)
数学
基因
化学
生物化学
几何学
作者
Mitchell Cohen,James Richard Forbes
出处
期刊:IEEE robotics and automation letters
日期:2020-01-13
卷期号:5 (2): 1151-1158
被引量:16
标识
DOI:10.1109/lra.2020.2966406
摘要
This paper presents a solution for the state estimation and control problems\nfor a class of unconventional vertical takeoff and landing (VTOL) UAVs\noperating in forward-flight conditions. A tightly-coupled state estimation\napproach is used to estimate the aircraft navigation states, sensor biases, and\nthe wind velocity. State estimation is done within a matrix Lie group framework\nusing the Invariant Extended Kalman Filter (IEKF), which offers several\nadvantages compared to standard multiplicative EKFs traditionally used in\naerospace and robotics problems. An SO(3)- based attitude controller is\nemployed, leading to a single attitude control law without a separate sideslip\ncontrol loop. A control allocator is used to determine how to use multiple,\npossibly redundant, actuators to produce the desired control moments. The wind\nvelocity estimates are used in the attitude controller and the control\nallocator to improve performance. A numerical example is considered using a\nsample VTOL tailsitter-type UAV with four control surfaces. Monte-Carlo\nsimulations demonstrate robustness of the proposed control and estimation\nscheme to various initial conditions, noise levels, and flight trajectories.\n
科研通智能强力驱动
Strongly Powered by AbleSci AI