手性(物理)
化学
超分子化学
液晶
结晶学
分子马达
化学物理
结(造纸)
Crystal(编程语言)
纳米尺度
分子物理学
纳米技术
凝聚态物理
晶体结构
物理
材料科学
手征对称破缺
复合材料
对称性破坏
量子力学
计算机科学
程序设计语言
Nambu–Jona Lasinio模型
作者
Nathalie Katsonis,Federico Lancia,David A. Leigh,Lucian Pirvu,Alexander Ryabchun,Fredrik Schaufelberger
出处
期刊:Nature Chemistry
[Nature Portfolio]
日期:2020-08-03
卷期号:12 (10): 939-944
被引量:56
标识
DOI:10.1038/s41557-020-0517-1
摘要
Transferring structural information from the nanoscale to the macroscale is a promising strategy for developing adaptive and dynamic materials. Here we demonstrate that the knotting and unknotting of a molecular strand can be used to control, and even invert, the handedness of a helical organization within a liquid crystal. An oligodentate tris(2,6-pyridinedicarboxamide) strand with six point-chiral centres folds into an overhand knot of single handedness upon coordination to lanthanide ions, both in isotropic solutions and in liquid crystals. In achiral liquid crystals, dopant knotted and unknotted strands induce supramolecular helical organizations of opposite handedness, with dynamic switching achievable through in situ knotting and unknotting events. Tying the molecular knot transmits information regarding asymmetry across length scales, from Euclidean point chirality (constitutional chirality) via molecular entanglement (conformation) to liquid-crystal (centimetre-scale) chirality. The magnitude of the effect induced by the tying of the molecular knots is similar to that famously used to rotate a glass rod on the surface of a liquid crystal by synthetic molecular motors. Reversible nanoscale knotting and unknotting of a molecular strand can be used to control the handedness of helical organizations at macroscopic length scales. Dopant knotted and unknotted strands induce supramolecular helical structures of opposite handedness in achiral liquid crystals, and the left- and right-handed forms can be switched in situ.
科研通智能强力驱动
Strongly Powered by AbleSci AI