Predictive Physical Manifestations for Progression of Scoliosis in Marfan Syndrome

外科
作者
Yuki Taniguchi,Yoshitaka Matsubayashi,So Kato,Toru Doi,Norifumi Takeda,Hiroki Yagi,Ryo Inuzuka,Yasushi Oshima,Sakae Tanaka
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:46 (15): 1020-1025 被引量:2
标识
DOI:10.1097/brs.0000000000003939
摘要

STUDY DESIGN A retrospective study of the prospective cohort. OBJECTIVE To demonstrate the accurate distribution of the severity of scoliosis in patients with Marfan syndrome, and to identify the predictive physical features for progression of scoliosis in Marfan syndrome. SUMMARY OF BACKGROUND DATA To date, no study has unveiled the risk factors for the progression of scoliosis in Marfan syndrome. METHODS We retrospectively obtained data from a prospective cohort of the Marfan syndrome clinic at our institute. We enrolled patients whose whole spine radiographs in the standing position were evaluated at the age of 15 or above, from January 2014 to March 2020. The collected variables were physical manifestations defined as in the systemic score of the revised Ghent nosology. We classified the degree of scoliosis into four categories: not apparent, mild (10° ≤ Cobb < 25°), moderate (25° ≤ Cobb < 40°), and (40° ≤ Cobb or surgery conducted). To identify the risk factors for progression of scoliosis in Marfan syndrome, we conducted univariate and multivariate association analyses between severe scoliosis and each physical manifestation. RESULTS We identified 131 eligible patients (61 men and 70 women) with a mean age of 31.2 years. Scoliosis with a Cobb angle of ≥10° was identified in 116 patients (88.5%). Moderate scoliosis was identified in 33 patients (25.2%) and severe scoliosis in 53 patients (40.5%). The prevalence of each physical manifestation was equivalent to that reported in previous studies. Multivariate logistic regression analysis revealed that female sex (odds ratio, 3.27) and positive wrist sign (4.45) were predictive factors for progression of scoliosis into severe state in patients with Marfan syndrome. CONCLUSIONS The present study demonstrated the accurate distribution of the severity of scoliosis and identified the predictive factors for progression of scoliosis in patients with Marfan syndrome.Level of Evidence: 3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助wang采纳,获得10
1秒前
1秒前
旺仔发布了新的文献求助10
1秒前
Joan完成签到 ,获得积分10
4秒前
极品男大发布了新的文献求助10
4秒前
韩晚渔完成签到,获得积分10
7秒前
独特的沛凝完成签到,获得积分10
9秒前
在水一方应助师昕采纳,获得10
10秒前
jeff完成签到,获得积分10
10秒前
乐乐应助Chen采纳,获得10
11秒前
13秒前
伶俐剑心完成签到,获得积分10
13秒前
极品男大完成签到,获得积分10
14秒前
Fred发布了新的文献求助30
14秒前
紧张的朋友完成签到,获得积分10
15秒前
15秒前
小蘑菇应助猪猪hero采纳,获得30
15秒前
16秒前
ferny发布了新的文献求助10
16秒前
桐桐应助ssy采纳,获得10
17秒前
Akim应助Capper采纳,获得10
17秒前
19秒前
19秒前
Chen发布了新的文献求助10
19秒前
shisujuan发布了新的文献求助10
20秒前
科研小白发布了新的文献求助10
20秒前
21秒前
祺仔发布了新的文献求助10
23秒前
23秒前
24秒前
Amai发布了新的文献求助10
24秒前
江屿发布了新的文献求助10
24秒前
研友_ZGR9Vn发布了新的文献求助10
25秒前
圭圭完成签到,获得积分10
26秒前
wang发布了新的文献求助10
27秒前
husaiao完成签到 ,获得积分10
27秒前
27秒前
27秒前
28秒前
28秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836283
求助须知:如何正确求助?哪些是违规求助? 3378620
关于积分的说明 10505293
捐赠科研通 3098250
什么是DOI,文献DOI怎么找? 1706351
邀请新用户注册赠送积分活动 820987
科研通“疑难数据库(出版商)”最低求助积分说明 772351