Algorithmic Transparency with Strategic Users

透明度(行为) 计算机科学 预测能力 人工智能 算法 机器学习 计算机安全 认识论 哲学
作者
Qiaochu Wang,Yan Huang,Stefanus Jasin,Param Vir Singh
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2297-2317 被引量:18
标识
DOI:10.1287/mnsc.2022.4475
摘要

Should firms that apply machine learning algorithms in their decision making make their algorithms transparent to the users they affect? Despite the growing calls for algorithmic transparency, most firms keep their algorithms opaque, citing potential gaming by users that may negatively affect the algorithm’s predictive power. In this paper, we develop an analytical model to compare firm and user surplus with and without algorithmic transparency in the presence of strategic users and present novel insights. We identify a broad set of conditions under which making the algorithm transparent actually benefits the firm. We show that, in some cases, even the predictive power of the algorithm can increase if the firm makes the algorithm transparent. By contrast, users may not always be better off under algorithmic transparency. These results hold even when the predictive power of the opaque algorithm comes largely from correlational features and the cost for users to improve them is minimal. We show that these insights are robust under several extensions of the main model. Overall, our results show that firms should not always view manipulation by users as bad. Rather, they should use algorithmic transparency as a lever to motivate users to invest in more desirable features. This paper was accepted by D. J. Wu, information systems. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2022.4475 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tingshan完成签到,获得积分10
刚刚
Tigher完成签到,获得积分10
1秒前
沉静盼易完成签到,获得积分10
1秒前
一杯美事发布了新的文献求助10
1秒前
1秒前
duan完成签到,获得积分10
1秒前
现实的飞风完成签到,获得积分10
2秒前
子小孙发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
马尔风完成签到,获得积分10
3秒前
3秒前
4秒前
0201发布了新的文献求助10
4秒前
4秒前
米饭多加水完成签到 ,获得积分10
5秒前
5秒前
默默菲音完成签到,获得积分20
6秒前
chen完成签到,获得积分10
6秒前
6秒前
QQ发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
科研通AI5应助机密塔采纳,获得10
8秒前
Fiona000001完成签到,获得积分10
8秒前
莫非发布了新的文献求助10
8秒前
追寻的筝发布了新的文献求助10
8秒前
肥猫发布了新的文献求助10
9秒前
qq完成签到 ,获得积分10
9秒前
JamesPei应助圆彰七大采纳,获得10
10秒前
熊小子爱学习完成签到,获得积分10
10秒前
一杯美事完成签到,获得积分10
11秒前
凌凌漆应助黄小花采纳,获得10
11秒前
科研通AI2S应助黄小花采纳,获得10
11秒前
Nancy完成签到,获得积分10
11秒前
酷炫甜瓜发布了新的文献求助10
11秒前
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813