Hybrid artificial genetic – neural network model to predict the transmission of vibration to the head during whole-body vibration training

传递率(结构动力学) 振动 人工神经网络 遗传算法 均方误差 计算机科学 声学 主管(地质) 反向传播 数学 模拟 结构工程 人工智能 统计 物理 工程类 地质学 机器学习 隔振 地貌学
作者
Mohammad Al‐Shabi,Naser Nawayseh,Maâmar Bettayeb
出处
期刊:Journal of Vibroengineering [JVE International Ltd.]
卷期号:22 (3): 705-720 被引量:9
标识
DOI:10.21595/jve.2019.20828
摘要

In this work, Artificial Neural Network (ANN) modelling has been employed to investigate the effects of various factors on the biodynamic responses to vibration represented by the transmissibility and its phase. These factors include, height, weight, Body Mass Index (BMI), age, frequency and posture. Nine subjects stood on a vibrating plate and were exposed to vertical vibration at nine frequencies in the range 17-46 Hz while adopting four different standing postures; Bent Knee posture (BK), Locked Knee posture (LK), right foot to the Front and left foot to the Back posture (FB) and One Leg posture (OL). The accelerations of the vibrating plate and the head of the subjects were measured during the exposure to vibration in order to calculate the transmissibility between the vibrating plate and the head. Genetic Algorithm (GA) was used to choose ANN’s number of hidden layers and number of neurons in each layer to obtain the best performance for predicting the transmissibility. The GA compared the root mean square errors (RMSE) between the ANN outputs and the experimental outputs, and then choose the best results that could be achieved. The number of hidden layers and number of neurons tested in GA vary from one hidden layer to four hidden layers, and from one neuron per layer to one hundred neurons per layer. Several runs have been conducted to train and validate the ANN model. The results show that double hidden layer with 13 neurons in the first layer and 12 neurons in the second layer give the best candidate. The proposed model can be integrated with whole-body vibration machines in order to choose the suitable exposure based on the user’s characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
耍酷寒烟完成签到,获得积分20
1秒前
yuzhou发布了新的文献求助10
2秒前
向浩发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
4秒前
在水一方应助优娜采纳,获得10
4秒前
Jiojio完成签到,获得积分10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
李嘿嘿发布了新的文献求助10
6秒前
共享精神应助明亮冷珍采纳,获得10
6秒前
7秒前
samara完成签到,获得积分20
7秒前
活力小笼包完成签到,获得积分10
9秒前
cc完成签到 ,获得积分10
9秒前
9秒前
文静的飞飞完成签到 ,获得积分10
10秒前
wuhaoqingnian发布了新的文献求助10
10秒前
Dr_Prince完成签到,获得积分10
10秒前
善学以致用应助陌人归采纳,获得20
10秒前
cenghao发布了新的文献求助10
11秒前
程文轩发布了新的文献求助10
12秒前
handsome发布了新的文献求助10
13秒前
情怀应助cc采纳,获得10
13秒前
13秒前
Orange应助迅猛2002采纳,获得10
14秒前
超帅的南珍完成签到,获得积分10
14秒前
14秒前
天真少年发布了新的文献求助10
14秒前
15秒前
15秒前
充电宝应助QIQI采纳,获得10
15秒前
殣覔完成签到,获得积分10
15秒前
Orange应助发财达人采纳,获得10
15秒前
研友_VZG7GZ应助没霉梅梅采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632254
求助须知:如何正确求助?哪些是违规求助? 4726532
关于积分的说明 14981567
捐赠科研通 4790212
什么是DOI,文献DOI怎么找? 2558228
邀请新用户注册赠送积分活动 1518633
关于科研通互助平台的介绍 1479071