MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention

作者
Wang Tianyi,Jianan Fan,Dingxin Zhang,Dongnan Liu,Yong-Xia,Heng Huang,Weidong Cai
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-1
标识
DOI:10.1109/tmi.2025.3632555
摘要

Histopathology and transcriptomics are fundamental modalities in cancer diagnostics, encapsulating the morphological and molecular characteristics of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific intrinsic structures. However, unlike conventional scenarios where multi-modal inputs often share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology data provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics data delineates molecular signatures through quantifying gene expression patterns. This inherent disparity introduces a major challenge in aligning these modalities while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning framework designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive feature representations for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on The Cancer Genome Atlas (TCGA) cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis. Code is available at https://github.com/TianyiFranklinWang/MIRROR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利汉堡完成签到 ,获得积分10
刚刚
哈哈完成签到,获得积分20
刚刚
zkqzzz完成签到 ,获得积分10
1秒前
1秒前
1秒前
杨冀军完成签到 ,获得积分10
2秒前
2秒前
maoli发布了新的文献求助10
2秒前
ddy完成签到,获得积分10
3秒前
邢善喆发布了新的文献求助10
4秒前
djbj2022发布了新的文献求助10
4秒前
xyx发布了新的文献求助10
4秒前
愉快新筠发布了新的文献求助10
4秒前
哈哈发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
Zinc发布了新的文献求助10
6秒前
yyyyy完成签到 ,获得积分10
6秒前
xuaotian完成签到,获得积分10
6秒前
7秒前
迅速的完成签到 ,获得积分10
8秒前
8秒前
慕青应助Azad采纳,获得10
8秒前
Alexbirchurros完成签到 ,获得积分0
10秒前
缓慢荔枝发布了新的文献求助10
10秒前
11秒前
coke发布了新的文献求助10
12秒前
binshier完成签到,获得积分10
12秒前
FashionBoy应助哈哈采纳,获得10
12秒前
土拨鼠发布了新的文献求助10
13秒前
雪媚娘完成签到,获得积分10
13秒前
愉快新筠完成签到,获得积分20
13秒前
彭于晏应助xyx采纳,获得10
14秒前
上官若男应助邢善喆采纳,获得10
15秒前
蓝天应助qjh采纳,获得10
15秒前
秋半雪完成签到,获得积分10
15秒前
17秒前
爆米花应助hl采纳,获得10
18秒前
lina完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553289
求助须知:如何正确求助?哪些是违规求助? 4637819
关于积分的说明 14651261
捐赠科研通 4579708
什么是DOI,文献DOI怎么找? 2511828
邀请新用户注册赠送积分活动 1486770
关于科研通互助平台的介绍 1457694